期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A novel hyper-cube shrink algorithm to predict metabolic fluxes based on enzyme activity only
1
作者 XIE Zheng-wei ZHANG Tian-yu OUYANG Qi 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1085-1085,共1页
OBJECTIVE One of the long-expected goals of genome-scale metabolic modeling is to evaluate the influence of the perturbed enzymes to the yield of an expected end product.METHDOS Metabolic control analysis(MCA)performs... OBJECTIVE One of the long-expected goals of genome-scale metabolic modeling is to evaluate the influence of the perturbed enzymes to the yield of an expected end product.METHDOS Metabolic control analysis(MCA)performs such role to calculate the sensitivity of flux change upon that of enzymes under the framework of ordinary differential equation(ODE)models,which are restricted in small-scale networks and require explicit kinetic parameters.The constraint-based models,like flux balance analysis(FBA),lack of the room of performing MCA because they are parameters-free.In this study,we developed a hyper-cube shrink algorithm(HCSA)to incorporate the enzymatic properties to the FBA model by introducing a pair of parameters for each reaction.Our algorithm was able to handle not only prediction of knockout strains but also strains with an adjustment of expression level of certain enzymes.RESULTS We first showed the concept by applying HCSA to a simplest three-nodes network.Then we show the HCSA possesses Michaelis-Menten like behaviors characterized by steady state of ODE.We obtained good prediction of a synthetic network in Saccharomyces cerevisiae producing voilacein and analogues.Finally we showed its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast.CONCLUSION We have developed an algorithm the impact on fluxes when certain enzymes were inhibited or activated.It provides us a powerful tool to evaluate the consequences of enzyme inhibitor or activator. 展开更多
关键词 metabolic network linear programming flux balance analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部