Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and sol...Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.展开更多
For the production of low ash content clean coal, separation at low density is required for some raw coals.Based on analyzing the fluidizing characteristics of magnetic-pearls with a specific size clistribution and fo...For the production of low ash content clean coal, separation at low density is required for some raw coals.Based on analyzing the fluidizing characteristics of magnetic-pearls with a specific size clistribution and formation mechanism of a microbubble fluidized bed, optimal technological and operating parameters suitable for low density coal separation were determined. The experimental results show that an air dense medium fluidized bed with low den-sity can be formed using magnetic pearls as medium solids, which can efficiently beneficiate coal of 6-50 mm size with a probable error Ep value of 0.05 at a separating density of 1.44 g/cm^3.展开更多
A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua...A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.展开更多
In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catal...In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.展开更多
Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and prop...Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed.Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal's frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of denoised signal is closed to that of pressure signal identified in frequency domain analysis.展开更多
Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed rea...Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR). A parametric study ot the effects of some process variables, including reaction temperature and space velocity, is undertaken. The operating conditions strongly affect the catalyst performance. Methane conversion was increased by increasing the temperature and lowering the space velocity. Using temperatures between 700 and 900℃ and space velocities between 3 and 6 LN/(gcat·h), a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run. In addition, carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.展开更多
The settling behavior of coarse particles in a gas-solid fluidized bed was experimentally studied by using magnetic tracer. It is well known that the calculation of terminal velocity is of interest in dense medium sep...The settling behavior of coarse particles in a gas-solid fluidized bed was experimentally studied by using magnetic tracer. It is well known that the calculation of terminal velocity is of interest in dense medium separation. However, this problem has not been completely solved up to now. In this work, the terminal velocity of an object mov-ing in a gas-solid fluidized bed was experimentally measured and theoretically calculated. The experimental results in-dicated that the plastic viscosity and yield stress of the bed increase as the size of fluidized particles increases, but it varies little when some coarser particles are mixed with the fluidized particles. The resistance to a rising object was an order magnitude greater than that to a settling object. The efficient buoyancy on a flaky object, which lies flatly on the gas distributor, was much less than that calculated by the Archimedes principle. The object does not always rise or set-tle with minimal projective area owing to radial motion of the fluidized particles. But in the lower part of the bed, the bar-shaped objects were likely with minimal projective area rising or settling.展开更多
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ...Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.展开更多
In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization charact...In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.展开更多
In order to reduce the energy consumption and subsequent air pollution of coal-fired power station, based on the analysis to size and density distribution of particles from the recirculating load of the classifier of ...In order to reduce the energy consumption and subsequent air pollution of coal-fired power station, based on the analysis to size and density distribution of particles from the recirculating load of the classifier of pulverizer, the separation experiment on sampling material from power plant with a dilute phase fluidized bed to remove pyrite and other minerals and numerical simulation on the separation process were done. The results show that the minimum fluidization velocity is 1.62 cm/s. Pyrite and other minerals in the material are separated. Ash of the upper and bottom layer material account for 33.34% and 73.42% respectively and sulfur content occupy 1.12% and 8.96% respectively. Scanning electron microscopy and spectroscopy tests show that sulfur in the bottom material exist in the form of pyrite. Numerical simulation on the flow field form of the dilute phase separation bed with gas-solid two phase and particle motion verifies the experimental results.展开更多
In the pharmaceutical industry,fluidized beds are typically used for pellets drying,coating and granulation.The gas-solids flow characteristic in the process plays an important role to control the heat and mass transf...In the pharmaceutical industry,fluidized beds are typically used for pellets drying,coating and granulation.The gas-solids flow characteristic in the process plays an important role to control the heat and mass transfer as well as the end-point product quality.Therefore,it is necessary to investigate the flow characteristics based on advanced measurement technologies.In this research,electrical capacitance tomography(ECT)sensor with eight electrodes was used to investigate the pharmaceutical fluidized bed drying process with different operation conditions.Key process parameters including solids concentration,particle moisture and capacitance signals in the process are given and analysed based on the ECT sensor.In addition,the fluidized bed process with Wurster tube is also investigated based on this ECT sensor.The effect of Wurster tube on the hydrodynamic behaviour and the dominant frequency spectrum distribution in the chamber were analysed based on fast Fourier transform.Test results reveal that process moisture change can be addressed from the raw capacitance of adjacent electrode pair combined with calibration model.Experimental result also indicates that ECT technology can provide useful information for process monitor in a fluidized bed dryer.展开更多
The flow dynamics of binary particle mixtures in the fluidized bed needs to be monitored in order to optimize the related industrial processes.In this paper,electrostatic sensing and high-speed imaging are applied to ...The flow dynamics of binary particle mixtures in the fluidized bed needs to be monitored in order to optimize the related industrial processes.In this paper,electrostatic sensing and high-speed imaging are applied to measure the velocities of polyethylene and sand particles in the binary particle mixtures in fluidization.Experimental studies were conducted on a lab-scale cold circulating fluidized bed.Correlation function between electrostatic signals from upstream and downstream electrodes placed along the riser shows two peaks that represent transit times for the two types of particles.To verify the above results,high-speed imaging was adopted to capture the flow images of particle mixtures.Particle Image Velocimetry and Particle Tracking Velocimetry algorithms were utilized to process the resulted images in order to measure the velocities of polyethylene and sand particles.The reasons for two-peak correlation functions are illustrated based on the frequency spectrums of the mono-solid-phase electrostatic signals and the velocity difference between polyethylene and sand particles.Finally,comparisons on the velocities obtained from electrostatic sensing and high-speed imaging demonstrate the electrostatic sensor can roughly estimate the particle velocity of binary particle mixtures in the near wall region of the circulating fluidized bed.展开更多
Bed stability, and especially the bed density distribution, is affected by the behavior of bubbles in a gas solid fluidized bed. Bubble rise velocity in a pulsed gas-solid fluidized bed was studied using photographic ...Bed stability, and especially the bed density distribution, is affected by the behavior of bubbles in a gas solid fluidized bed. Bubble rise velocity in a pulsed gas-solid fluidized bed was studied using photographic and computational fluid dynamics methods. The variation in bubble rise velocity was investigated as a function of the periodic pulsed air flow. A predictive model of bubble rise velocity was derived: ub=ψ(Ut+Up-Umf)+kp(gdb)(1/2). The software of Origin was used to fit the empirical coefficients to give ψ = 0.4807 and kp = 0.1305. Experimental verification of the simulations shows that the regular change in bubble rise velocity is accurately described by the model. The correlation coefficient was 0.9905 for the simulations and 0.9706 for the experiments.展开更多
Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studi...Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studied. The numerical simulation results show that 0.15–0.06 mm fine magnetite powder can decrease the disturbances caused by the bubbles. This is beneficial to the uniformity of the gas-solid interactions and thus to the uniformity and stability of the bed density and height. The experimental results show that, with an increase in the fine coal content in medium solids, both the fluidization quality and the beneficiation performance of the bed decreased gradually. When the fine coal content was no more than 13%, a relatively high superficial gas velocity increased the beneficiation efficiency. When the content was more than 13%, part of the fine coal was separated, leading to product layers. The separation efficiency was therefore gradually decreased. The models for predicting the bed density standard deviation and the probable error, E, value were both proposed. The E value can reach to 0.04–0.07 g/cm^3 under the optimized experimental parameters. This work provides a foundation for the adjustment of the bed density and the separation performance of the modularized 40–60 ton per hour dry coalbeneficiation industrial system.展开更多
In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been fo...In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously aeeumulate in fluidized bed, thus inevitably reducing the density of the bed.In order to keep bed density stable, the authors adopted such measures as split-now of used medium and complement of fresb dense medium.The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have estabinbed some relative dynamic mathematical models for it.展开更多
Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization ...Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization of non-spherical particles.Understanding mixing behaviors of binary mixtures in a fluidized bed has specific significance for the design and optimization of related industrial processes.In this study,the computational fluid dynamic-discrete element method with the consideration of rolling friction was applied to evaluate the mixing behaviors of binary mixtures comprising spherocylindrical particles and spherical particles in a fluidized bed.The simulation results indicate that the differences between rotational particle velocities were higher than those of translational particle velocities for spherical and non-spherical particles when well mixed.Moreover,as the volume fraction of the spherocylindrical particles increases,translational and rotational granular temperatures gradually increase.In addition,the addition of the spherical particles makes the spherocylindrical particles preferably distributed in a vertical orientation.展开更多
Contraction behavior of a liquid-solid fluidized bed has been investigated numerically. Based on a simple hydrodynamic model proposed by Brandani and Zhang (2006), a case study for solid particles with a density of ...Contraction behavior of a liquid-solid fluidized bed has been investigated numerically. Based on a simple hydrodynamic model proposed by Brandani and Zhang (2006), a case study for solid particles with a density of 3,000 kg/m^3 and a diameter of 2.5× 10^-3 m is simulated in a two-dimensional fluidized bed (0.50 m height and 0.10 m width). Due to the continuity of numerical computation, there is a transition region between two zones of different solid holdups when the liquid velocity is suddenly changed. The top, middle and bottom interfaces are explored to obtain a reasonable interface height. The simulated results show that the steady time of the middle interface is more close to Gibilaro's theory and suitable for describing the contraction process of a phase interface. Furthermore, the effect of liquid velocity and particle diameter is simulated in the other two-dimensional fluidized bed (0.10 m height and 0.02 m width) where the solid particles are glass beads whose properties are similar to those of the catalyst particles used in the alkylation process. The results also show good agreement with Gibilaro's theory, and that larger particles lead to a more obvious bed contraction.展开更多
An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas v...An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with the fluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gas velocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidization behavior could be investigated. The results showed that the bed density in top feeding reactor responded more stably to the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on this study, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimization of bottom feeding reactor will be needed.展开更多
A demonstration plant and a commercial plant employing coal dry cleaning technology with an air-solid fluidized bed were built in China. The operation practice of these two plants shows that the surface moisture and t...A demonstration plant and a commercial plant employing coal dry cleaning technology with an air-solid fluidized bed were built in China. The operation practice of these two plants shows that the surface moisture and the fines or dust of feed coal must be well controlled as low as possible. For this purpose, a new process of combined removal of surface moisture and dust from feed coal using a vibrated fluidized bed dryer was investigated in a batch test apparatus and a pilot test system. A mathematical model on drying kinetics of coal surface moisture was developed and three empirical formulas of the model coefficient involving the main operating variables were determined based on the test results from the batch test apparatus. The mathematical model shows that the surface moisture retained in coal during drying decreases exponentially with drying time. According to this model, a new divisional heat supply mode, in which the inlet gas of higher temperature was introduced into the fore part of the dryer and the inlet gas of lower temperature into the rear part of the dryer, was employed in the pilot test system. The pilot tests show that 1) the new divisional heat supply mode is effective for lowering down the average temperature and reducing the total heat loss of the outlet gas off the dryer, 2) the moist coal of about 60 g/kg surface moisture contentcan be dried to about 10 g/kg, and simultaneously the fines (〈1mm in diameter) adhering to the surface of coarse coal particles are completely washed off by the gas flow.展开更多
In this paper, the authors point out that the Creativity is an inevitable request in solving engineering and technological problems and that the coal beneficiation technology with air dense medium fluidized bed is a r...In this paper, the authors point out that the Creativity is an inevitable request in solving engineering and technological problems and that the coal beneficiation technology with air dense medium fluidized bed is a result of reversal thinking, and its forming mechanism is the use of other things for reference and the transplantation.展开更多
基金support from the Major State Basic Research Development Program of China (973 Program,2005CB221205)National Natural Science Foundation of China (No.20490200 and 20576076)
文摘Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.
基金Projects 90510002, 90210035 supported by the National Natural Science Foundation of China306008 by the Science and Technology Research of Ministry of Education of China
文摘For the production of low ash content clean coal, separation at low density is required for some raw coals.Based on analyzing the fluidizing characteristics of magnetic-pearls with a specific size clistribution and formation mechanism of a microbubble fluidized bed, optimal technological and operating parameters suitable for low density coal separation were determined. The experimental results show that an air dense medium fluidized bed with low den-sity can be formed using magnetic pearls as medium solids, which can efficiently beneficiate coal of 6-50 mm size with a probable error Ep value of 0.05 at a separating density of 1.44 g/cm^3.
基金support from National Basic Research Program of China(No.2009CB219801)National Natural Science Foundation of China(No.20976191)+1 种基金International Cooperative Program of Guizhou Province([2009]700110)Program for New Century Excellent Talents in University(NCET-09-0342)
文摘A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.
文摘In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.
基金support by the Natural Science Foundation of Jiangsu Province of China (No. BK20160266)the National Natural Science Foundation of China (Nos. 51704287 and U1508210)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed.Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal's frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of denoised signal is closed to that of pressure signal identified in frequency domain analysis.
基金the Spanish Science and InnovationMinistry for the financial support of Project ENE2008-06516-C03-01
文摘Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR). A parametric study ot the effects of some process variables, including reaction temperature and space velocity, is undertaken. The operating conditions strongly affect the catalyst performance. Methane conversion was increased by increasing the temperature and lowering the space velocity. Using temperatures between 700 and 900℃ and space velocities between 3 and 6 LN/(gcat·h), a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run. In addition, carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.
基金Projects (504740309021003550025411) supported by National Natural Science Foundation of China
文摘The settling behavior of coarse particles in a gas-solid fluidized bed was experimentally studied by using magnetic tracer. It is well known that the calculation of terminal velocity is of interest in dense medium separation. However, this problem has not been completely solved up to now. In this work, the terminal velocity of an object mov-ing in a gas-solid fluidized bed was experimentally measured and theoretically calculated. The experimental results in-dicated that the plastic viscosity and yield stress of the bed increase as the size of fluidized particles increases, but it varies little when some coarser particles are mixed with the fluidized particles. The resistance to a rising object was an order magnitude greater than that to a settling object. The efficient buoyancy on a flaky object, which lies flatly on the gas distributor, was much less than that calculated by the Archimedes principle. The object does not always rise or set-tle with minimal projective area owing to radial motion of the fluidized particles. But in the lower part of the bed, the bar-shaped objects were likely with minimal projective area rising or settling.
基金financially supported by the National Natural Science Foundation of China (Nos. 51221462, 51134022,51174203 and 51074156)the National Basic Research Program of China (No. 2012CB214904)China Postdoctoral Science Foundation (No. 2013M531430)
文摘Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.
基金supported by the China Ocean Mineral Resources Research&Development Program(DY125-15-T-08)the National Natural Science Foundation of China(21176026,21176242)。
文摘In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.
基金supported financially by the National Natural Science Foundation of China (Nos. 51074156 and 50921002)
文摘In order to reduce the energy consumption and subsequent air pollution of coal-fired power station, based on the analysis to size and density distribution of particles from the recirculating load of the classifier of pulverizer, the separation experiment on sampling material from power plant with a dilute phase fluidized bed to remove pyrite and other minerals and numerical simulation on the separation process were done. The results show that the minimum fluidization velocity is 1.62 cm/s. Pyrite and other minerals in the material are separated. Ash of the upper and bottom layer material account for 33.34% and 73.42% respectively and sulfur content occupy 1.12% and 8.96% respectively. Scanning electron microscopy and spectroscopy tests show that sulfur in the bottom material exist in the form of pyrite. Numerical simulation on the flow field form of the dilute phase separation bed with gas-solid two phase and particle motion verifies the experimental results.
基金Financial supports from the National Natural Science Foundation of China(No.61771455)Chinese Academy of Sciences Major International Collaboration Project and the Royal Society Newton Advanced Fellowship(NA170124).
文摘In the pharmaceutical industry,fluidized beds are typically used for pellets drying,coating and granulation.The gas-solids flow characteristic in the process plays an important role to control the heat and mass transfer as well as the end-point product quality.Therefore,it is necessary to investigate the flow characteristics based on advanced measurement technologies.In this research,electrical capacitance tomography(ECT)sensor with eight electrodes was used to investigate the pharmaceutical fluidized bed drying process with different operation conditions.Key process parameters including solids concentration,particle moisture and capacitance signals in the process are given and analysed based on the ECT sensor.In addition,the fluidized bed process with Wurster tube is also investigated based on this ECT sensor.The effect of Wurster tube on the hydrodynamic behaviour and the dominant frequency spectrum distribution in the chamber were analysed based on fast Fourier transform.Test results reveal that process moisture change can be addressed from the raw capacitance of adjacent electrode pair combined with calibration model.Experimental result also indicates that ECT technology can provide useful information for process monitor in a fluidized bed dryer.
基金financial supports from the National Natural Science Foundation of China (No.61403138)Beijing Natural Science Foundation (No.3202028)+1 种基金funded by the National Research Foundation (NRF), Prime Minister’s Offce, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programmeGrant Number R-706-001-102–281, National University of Singapore。
文摘The flow dynamics of binary particle mixtures in the fluidized bed needs to be monitored in order to optimize the related industrial processes.In this paper,electrostatic sensing and high-speed imaging are applied to measure the velocities of polyethylene and sand particles in the binary particle mixtures in fluidization.Experimental studies were conducted on a lab-scale cold circulating fluidized bed.Correlation function between electrostatic signals from upstream and downstream electrodes placed along the riser shows two peaks that represent transit times for the two types of particles.To verify the above results,high-speed imaging was adopted to capture the flow images of particle mixtures.Particle Image Velocimetry and Particle Tracking Velocimetry algorithms were utilized to process the resulted images in order to measure the velocities of polyethylene and sand particles.The reasons for two-peak correlation functions are illustrated based on the frequency spectrums of the mono-solid-phase electrostatic signals and the velocity difference between polyethylene and sand particles.Finally,comparisons on the velocities obtained from electrostatic sensing and high-speed imaging demonstrate the electrostatic sensor can roughly estimate the particle velocity of binary particle mixtures in the near wall region of the circulating fluidized bed.
基金financially supported by the National Natural Science Foundation of China for Innovative Research Group (No.51221462)the National Natural Science Foundation of China (Nos.51134022 and 51174203)+2 种基金the State Key Basic Research Program of China (No.2012CB214904)Specialized Research Fund for the Doctoral Program of Higher Education (No.20120095130001)the Fundamental Research Funds for the Central Universities (No.2013DXS02)
文摘Bed stability, and especially the bed density distribution, is affected by the behavior of bubbles in a gas solid fluidized bed. Bubble rise velocity in a pulsed gas-solid fluidized bed was studied using photographic and computational fluid dynamics methods. The variation in bubble rise velocity was investigated as a function of the periodic pulsed air flow. A predictive model of bubble rise velocity was derived: ub=ψ(Ut+Up-Umf)+kp(gdb)(1/2). The software of Origin was used to fit the empirical coefficients to give ψ = 0.4807 and kp = 0.1305. Experimental verification of the simulations shows that the regular change in bubble rise velocity is accurately described by the model. The correlation coefficient was 0.9905 for the simulations and 0.9706 for the experiments.
基金financially supported by the National Program on Key Basic Research Project of China (No.2012CB214904)the National Natural Science Foundation of China (Nos.51221462,51134022 and 51174203)
文摘Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studied. The numerical simulation results show that 0.15–0.06 mm fine magnetite powder can decrease the disturbances caused by the bubbles. This is beneficial to the uniformity of the gas-solid interactions and thus to the uniformity and stability of the bed density and height. The experimental results show that, with an increase in the fine coal content in medium solids, both the fluidization quality and the beneficiation performance of the bed decreased gradually. When the fine coal content was no more than 13%, a relatively high superficial gas velocity increased the beneficiation efficiency. When the content was more than 13%, part of the fine coal was separated, leading to product layers. The separation efficiency was therefore gradually decreased. The models for predicting the bed density standard deviation and the probable error, E, value were both proposed. The E value can reach to 0.04–0.07 g/cm^3 under the optimized experimental parameters. This work provides a foundation for the adjustment of the bed density and the separation performance of the modularized 40–60 ton per hour dry coalbeneficiation industrial system.
文摘In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously aeeumulate in fluidized bed, thus inevitably reducing the density of the bed.In order to keep bed density stable, the authors adopted such measures as split-now of used medium and complement of fresb dense medium.The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have estabinbed some relative dynamic mathematical models for it.
基金financially supported by the National Natural Science Foundation of China(Grant No.51706055).
文摘Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization of non-spherical particles.Understanding mixing behaviors of binary mixtures in a fluidized bed has specific significance for the design and optimization of related industrial processes.In this study,the computational fluid dynamic-discrete element method with the consideration of rolling friction was applied to evaluate the mixing behaviors of binary mixtures comprising spherocylindrical particles and spherical particles in a fluidized bed.The simulation results indicate that the differences between rotational particle velocities were higher than those of translational particle velocities for spherical and non-spherical particles when well mixed.Moreover,as the volume fraction of the spherocylindrical particles increases,translational and rotational granular temperatures gradually increase.In addition,the addition of the spherical particles makes the spherocylindrical particles preferably distributed in a vertical orientation.
基金Financial support from the National Natural Science Foundation of China(20976191 and 51025624)Program for New Century Excellent Talents in University (NCET-09-0342)111 Project (B12034)
文摘Contraction behavior of a liquid-solid fluidized bed has been investigated numerically. Based on a simple hydrodynamic model proposed by Brandani and Zhang (2006), a case study for solid particles with a density of 3,000 kg/m^3 and a diameter of 2.5× 10^-3 m is simulated in a two-dimensional fluidized bed (0.50 m height and 0.10 m width). Due to the continuity of numerical computation, there is a transition region between two zones of different solid holdups when the liquid velocity is suddenly changed. The top, middle and bottom interfaces are explored to obtain a reasonable interface height. The simulated results show that the steady time of the middle interface is more close to Gibilaro's theory and suitable for describing the contraction process of a phase interface. Furthermore, the effect of liquid velocity and particle diameter is simulated in the other two-dimensional fluidized bed (0.10 m height and 0.02 m width) where the solid particles are glass beads whose properties are similar to those of the catalyst particles used in the alkylation process. The results also show good agreement with Gibilaro's theory, and that larger particles lead to a more obvious bed contraction.
文摘An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with the fluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gas velocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidization behavior could be investigated. The results showed that the bed density in top feeding reactor responded more stably to the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on this study, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimization of bottom feeding reactor will be needed.
基金Projects 90210035 supported by National Natural Science Foundation of China and 95-215-03 supported by National Key Research Project of China
文摘A demonstration plant and a commercial plant employing coal dry cleaning technology with an air-solid fluidized bed were built in China. The operation practice of these two plants shows that the surface moisture and the fines or dust of feed coal must be well controlled as low as possible. For this purpose, a new process of combined removal of surface moisture and dust from feed coal using a vibrated fluidized bed dryer was investigated in a batch test apparatus and a pilot test system. A mathematical model on drying kinetics of coal surface moisture was developed and three empirical formulas of the model coefficient involving the main operating variables were determined based on the test results from the batch test apparatus. The mathematical model shows that the surface moisture retained in coal during drying decreases exponentially with drying time. According to this model, a new divisional heat supply mode, in which the inlet gas of higher temperature was introduced into the fore part of the dryer and the inlet gas of lower temperature into the rear part of the dryer, was employed in the pilot test system. The pilot tests show that 1) the new divisional heat supply mode is effective for lowering down the average temperature and reducing the total heat loss of the outlet gas off the dryer, 2) the moist coal of about 60 g/kg surface moisture contentcan be dried to about 10 g/kg, and simultaneously the fines (〈1mm in diameter) adhering to the surface of coarse coal particles are completely washed off by the gas flow.
文摘In this paper, the authors point out that the Creativity is an inevitable request in solving engineering and technological problems and that the coal beneficiation technology with air dense medium fluidized bed is a result of reversal thinking, and its forming mechanism is the use of other things for reference and the transplantation.