The reflection and transmission characteristics of an anisotropic half-space medium normally illuminated by a plane wave are analyzed by kDB coordination. The general formula of reflection coefficient at the air-mediu...The reflection and transmission characteristics of an anisotropic half-space medium normally illuminated by a plane wave are analyzed by kDB coordination. The general formula of reflection coefficient at the air-medium interface is given, and its validity is also discussed. The possible propagating modes in different mediums and the effect of medium parameters on these modes are emphatically studied. This work provides the theoretical preparations for the parameter reconstruction of an anisotropic material.展开更多
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based co...A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.展开更多
雷电作为自然界一种极端天气的表现形式,常给地基、地面、高耸建筑等造成严重破坏。工程防雷措施依赖于土体雷电冲击特性。现阶段,研究人员大多从电气工程角度探究雷电冲击土体造成的危害,但因学科间的差异与局限,雷电作用下岩土工程与...雷电作为自然界一种极端天气的表现形式,常给地基、地面、高耸建筑等造成严重破坏。工程防雷措施依赖于土体雷电冲击特性。现阶段,研究人员大多从电气工程角度探究雷电冲击土体造成的危害,但因学科间的差异与局限,雷电作用下岩土工程与电气工程的交叉融合方面的研究十分欠缺。本文构建土体雷电冲击模型,基于电弧通道能量平衡方程计算雷电放电产生的冲击波压力,将冲击波压力作为外加荷载作用在土体中,并通过修正Mohr-Coulomb屈服准则考虑动荷载下土体应变硬化,利用土体的理想锁定状态方程(Idealized Locked Equation of State)和动态扩孔方法考虑冲击波非稳态加载,探究雷电冲击下土体的弹塑性界面及应力时程变化规律。研究表明:在雷电冲击下,土体应力随时间变化呈现先陡增后迅速衰减的趋势,应力突变点表明土体此时正处于弹塑性交界面;在应力突变点之前,土体附加应力趋于0,处于弹性状态。任一时刻下,随着逐渐远离雷电冲击点,土体应力呈现迅速衰减的趋势,应力发生突变骤降表明此处土体正处于弹塑性交界面;在突变点之后土体附加应力趋于0,处于弹性状态。土体压缩系数对土体的弹塑性界面变化具有显著影响,随着压缩指标增大,土体塑性区半径逐渐减小;随着土体黏聚力逐渐增大,土体塑性区半径逐渐减小;增大土体弹性模量可以增大土体塑性区半径,但变化幅度相对较小;电流波形对土体塑性区中的应力会产生较大影响,而对土体弹性区影响较小。展开更多
文摘The reflection and transmission characteristics of an anisotropic half-space medium normally illuminated by a plane wave are analyzed by kDB coordination. The general formula of reflection coefficient at the air-medium interface is given, and its validity is also discussed. The possible propagating modes in different mediums and the effect of medium parameters on these modes are emphatically studied. This work provides the theoretical preparations for the parameter reconstruction of an anisotropic material.
基金Project(10572026) supported by the National Natural Science Foundation of China
文摘A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.
文摘雷电作为自然界一种极端天气的表现形式,常给地基、地面、高耸建筑等造成严重破坏。工程防雷措施依赖于土体雷电冲击特性。现阶段,研究人员大多从电气工程角度探究雷电冲击土体造成的危害,但因学科间的差异与局限,雷电作用下岩土工程与电气工程的交叉融合方面的研究十分欠缺。本文构建土体雷电冲击模型,基于电弧通道能量平衡方程计算雷电放电产生的冲击波压力,将冲击波压力作为外加荷载作用在土体中,并通过修正Mohr-Coulomb屈服准则考虑动荷载下土体应变硬化,利用土体的理想锁定状态方程(Idealized Locked Equation of State)和动态扩孔方法考虑冲击波非稳态加载,探究雷电冲击下土体的弹塑性界面及应力时程变化规律。研究表明:在雷电冲击下,土体应力随时间变化呈现先陡增后迅速衰减的趋势,应力突变点表明土体此时正处于弹塑性交界面;在应力突变点之前,土体附加应力趋于0,处于弹性状态。任一时刻下,随着逐渐远离雷电冲击点,土体应力呈现迅速衰减的趋势,应力发生突变骤降表明此处土体正处于弹塑性交界面;在突变点之后土体附加应力趋于0,处于弹性状态。土体压缩系数对土体的弹塑性界面变化具有显著影响,随着压缩指标增大,土体塑性区半径逐渐减小;随着土体黏聚力逐渐增大,土体塑性区半径逐渐减小;增大土体弹性模量可以增大土体塑性区半径,但变化幅度相对较小;电流波形对土体塑性区中的应力会产生较大影响,而对土体弹性区影响较小。
基金the National Natural Science Foundation of China(62304252)the Youth Innovation Promotion Association of Chinese Academy Sciences(CAS)and IMECAS-HKUST-Joint Laboratory of Microelectronics。
基金National Natural Science Foundation of China (22269010)Jiangxi Provincial Natural Science Foundation (20224BAB214021)Major Research Program of Jingdezhen Ceramic Industry (2023ZDGG002)。