In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt...In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.展开更多
In this work,the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump.A phenomenological dielectric-barrier-di...In this work,the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump.A phenomenological dielectric-barrier-discharge plasma model which regarded the plasma effect as the body force was implemented into the Navier–Stokes equations solved by the method of large eddy simulations.The results show that a series of vortex pairs,which indicated dipole formation and periodicity distribution were generated in the boundary layer when the plasma was applied to the flow over a flat plane.They would enhance the energy exchanged between the near wall region and the free stream.Besides,their spatial trajectories are deeply affected by the actuation strength.When the actuator was engaged in the flow over a wall-mounted hump,the vortex pairs were also produced,which was able to delay flow separation as well as to promote flow reattachment and reduce the generation of a vortex,achieving the goal of reducing dissipation and decreasing flow resistance.展开更多
The paper studies on the sediment-laden flow by using MicroADV.Laboratory calibration has been conducted to determine the relationship between backscattered signal strength and sediment concentration. Based on the exp...The paper studies on the sediment-laden flow by using MicroADV.Laboratory calibration has been conducted to determine the relationship between backscattered signal strength and sediment concentration. Based on the experimental data,the interactions between sediment and fluid in open channel flow are investi- gated.The experiment shows that there exist inner relation between sediment concentration and turbulence, and the relationship is distinctry related to the diameter of particle as well as the flow co...展开更多
The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-ar...The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-array of Mach/Langmuir probes. In the experiments of Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam injection (SMBI), Multi-shot Pellet Injection (MPI) and Neutral Beam injection (NBI), the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The results indicate that a sheared poloidal flow can be generated in Tokamak plasma due to radially varying Reynolds stress.展开更多
The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressur...The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressure drop on vortex structure development and turbulence pulsation was investigated.The development of vortex structure could be divided into three stages:Kelvin-Helmholtz(K-H)instability,transition stage and swirling flow instability.Swirling flow could significantly enhance radial turbulence pulsation and increase diffusion angle.At the downstream of the jet flow,turbulence pulsation dissipation was the main reason for jet velocity attenuation.With the increase of pressure drop,the jet velocity,pulsation amplitude and the symmetry of velocity distribution increased correspondingly.Meanwhile the pressure pulsation along with the axis and vortex transport intensity also increased significantly.When the jet distance exceeded about 9 times the dimensionless jet distance,the impact distance of swirling jet could not be improved effectively by increasing the pressure drop.However,it could effectively increase the swirl intensity and jet diffusion angle.The swirling jet is more suitable for radial horizontal drilling with large hole size,coalbed methane horizontal well cavity completion and roadway drilling and pressure relief,etc.展开更多
Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to t...Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to the recognition of flow regime and the optimal design of industrial equipment.In this paper,we propose a novel complex network-based deep learning method for characterizing gas-liquid flow.Firstly,we map the multichannel measurements to multiple limited penetrable visibility graphs(LPVGs)and obtain their degree sequences as the graph representation.Based on the degree distribution,we analyze the complicated flow behavior under different flow structures.Then,we design a dual-input convolutional neural network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measurement of gas void fraction.We implement the model with two parallel branches with the same structure,each corresponding to one input.Each branch consists of a channel-projection convolutional part,a spatial-temporal convolutional part,a dense block and an attention module.The outputs of the two branches are concatenated and fed into several full connected layers for the classification and measurement.At last,our method achieves an accuracy of 95.3%for the classification of flow structures,and a mean squared error of 0.0038 and a mean absolute percent error of 6.3%for the measurement of gas void fraction.Our method provides a promising solution for characterizing gas-liquid flow and measuring flow parameters.展开更多
Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocit...Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time- averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25~, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28~, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique "v". Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2009 CB724100)the National Natural Science Foundation of China (Grant No. 11172326)
文摘In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.
基金supported by the Scientific Research Project Fund of Middle East Technical University,under project # BAP-08-11-2016-044
文摘In this work,the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump.A phenomenological dielectric-barrier-discharge plasma model which regarded the plasma effect as the body force was implemented into the Navier–Stokes equations solved by the method of large eddy simulations.The results show that a series of vortex pairs,which indicated dipole formation and periodicity distribution were generated in the boundary layer when the plasma was applied to the flow over a flat plane.They would enhance the energy exchanged between the near wall region and the free stream.Besides,their spatial trajectories are deeply affected by the actuation strength.When the actuator was engaged in the flow over a wall-mounted hump,the vortex pairs were also produced,which was able to delay flow separation as well as to promote flow reattachment and reduce the generation of a vortex,achieving the goal of reducing dissipation and decreasing flow resistance.
基金Supported by National Key Basic Research and Development Program(973 Program)(2003CB415205)the National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher Education of the Ministry of Education of China
文摘The paper studies on the sediment-laden flow by using MicroADV.Laboratory calibration has been conducted to determine the relationship between backscattered signal strength and sediment concentration. Based on the experimental data,the interactions between sediment and fluid in open channel flow are investi- gated.The experiment shows that there exist inner relation between sediment concentration and turbulence, and the relationship is distinctry related to the diameter of particle as well as the flow co...
文摘The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-array of Mach/Langmuir probes. In the experiments of Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam injection (SMBI), Multi-shot Pellet Injection (MPI) and Neutral Beam injection (NBI), the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The results indicate that a sheared poloidal flow can be generated in Tokamak plasma due to radially varying Reynolds stress.
基金Supported by the Beijing Natural Science Foundation Project(3222039)National Natural Science Foundation of China(51827804).
文摘The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressure drop on vortex structure development and turbulence pulsation was investigated.The development of vortex structure could be divided into three stages:Kelvin-Helmholtz(K-H)instability,transition stage and swirling flow instability.Swirling flow could significantly enhance radial turbulence pulsation and increase diffusion angle.At the downstream of the jet flow,turbulence pulsation dissipation was the main reason for jet velocity attenuation.With the increase of pressure drop,the jet velocity,pulsation amplitude and the symmetry of velocity distribution increased correspondingly.Meanwhile the pressure pulsation along with the axis and vortex transport intensity also increased significantly.When the jet distance exceeded about 9 times the dimensionless jet distance,the impact distance of swirling jet could not be improved effectively by increasing the pressure drop.However,it could effectively increase the swirl intensity and jet diffusion angle.The swirling jet is more suitable for radial horizontal drilling with large hole size,coalbed methane horizontal well cavity completion and roadway drilling and pressure relief,etc.
基金supported by the National Natural Science Foundation of China under Grants 61922062 and 61873181。
文摘Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to the recognition of flow regime and the optimal design of industrial equipment.In this paper,we propose a novel complex network-based deep learning method for characterizing gas-liquid flow.Firstly,we map the multichannel measurements to multiple limited penetrable visibility graphs(LPVGs)and obtain their degree sequences as the graph representation.Based on the degree distribution,we analyze the complicated flow behavior under different flow structures.Then,we design a dual-input convolutional neural network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measurement of gas void fraction.We implement the model with two parallel branches with the same structure,each corresponding to one input.Each branch consists of a channel-projection convolutional part,a spatial-temporal convolutional part,a dense block and an attention module.The outputs of the two branches are concatenated and fed into several full connected layers for the classification and measurement.At last,our method achieves an accuracy of 95.3%for the classification of flow structures,and a mean squared error of 0.0038 and a mean absolute percent error of 6.3%for the measurement of gas void fraction.Our method provides a promising solution for characterizing gas-liquid flow and measuring flow parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172326 and 11302256)
文摘Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time- averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25~, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28~, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique "v". Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.