The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce th...The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce the risk of anastomotic thrombosis due to the size mismatch。展开更多
The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are conside...The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
基金supported by Grants-in-Aid from the National Natural Science Foundation of China No.10632010,30670517
文摘The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce the risk of anastomotic thrombosis due to the size mismatch。
基金support from Higher Education Commission (HEC) of Pakistan through Ph.D Indigeous Scheme.
文摘The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.