Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative...Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。展开更多
Flaxseed proteins and antioxidant peptides(AP)encrypted in their sequences were analysed in silico with a range of bioinformatics tools to study their physicochemical properties,allergenicity,and toxicity.Nine proteas...Flaxseed proteins and antioxidant peptides(AP)encrypted in their sequences were analysed in silico with a range of bioinformatics tools to study their physicochemical properties,allergenicity,and toxicity.Nine proteases(digestive,plant and microbial sources)were assessed for their ability to release known APs from 23 mature flaxseed storage proteins using the BIOPEP database.The families of proteins identified were predominantly globulins,oleosins,and small amount of conlinin.Overall,253 APs were identified from these proteins.More peptides were released by enzymatic hydrolysis from the globulins than those from oleosins and conlinin.Compared with other enzymes studied,the plant proteases(papain,ficin,and bromelain)were found to be superior to releasing APs from the flaxseed proteins.Analysis of toxicity by ToxinPred showed that none of the peptides released was toxic.Most of the APs showed structural features that are important for antioxidation,including relatively low molecular weight(dipeptides and tripeptides only);amphipathic properties(hydrophobicity range of-0.5 to+0.5);relatively low Boman index(≤2);broad range of pI(3.7-10.8),and an abundance of antioxidant amino acid residues(e.g.glutamic acid and histidine).This study demonstrate the suitability of flaxseed proteins as a source of APs.展开更多
Flaxseed has displayed the potential beneficial as functional foods.However,most studies focused on effects of flaxseed extracts or ingredients in flaxseed.Besides,few studies showed that flaxseed extracts contributed...Flaxseed has displayed the potential beneficial as functional foods.However,most studies focused on effects of flaxseed extracts or ingredients in flaxseed.Besides,few studies showed that flaxseed extracts contributed to anti-type 1 diabetes(T1D),yet the underlying mechanism is still unknown.In the present study,16.7% of milled flaxseed(MF)-added diet was given to diabetic mice induced by streptozocin for 6 weeks.The results showed that MF feeding 1)slightly decreased blood glucose levels and improved the ability of glucose tolerance by oral glucose tolerance test,2)decreased liver tumor necrosis factor-αlevels and increased liver glycogen levels with significance via down-regulating TLR4/NF-κB pathways,3)and significantly altered some beneficial bacteria in gut microbiota.In conclusion,the present study showed that milled flaxseed showed the potential on anti-T1D through anti-inflammation via TLR4/NF-κB and altering the gut microbiota in STZ-induced diabetic mice.展开更多
Flaxseed oil(FSO)rich in n-3 polyunsaturated fatty acids(PUFAs)can protect against obesity and insulin resistance,but the underlying mechanism is unknown.An integrative multiomics of the microbiome and targeted metab ...Flaxseed oil(FSO)rich in n-3 polyunsaturated fatty acids(PUFAs)can protect against obesity and insulin resistance,but the underlying mechanism is unknown.An integrative multiomics of the microbiome and targeted metab olomics approach was performed to investigate the possible pathway for flaxseed oil supplementation on reducing serum total cholesterol,triglyceride and epididymal adipose in high-fat diet mice.FSO ameliorated the gut microbial dysbiosis by increasing the community diversity and the abundance of Clostridiales and Ruminococcaceae.These effects were associated with the regulation of bile acid(BAs)in the feces.FSO reduced the concentrations of conjugated BAs,such as cholic acid,tauro-α-murocholic acid,and tauro-ursodesoxycholic acid in feces,which in turn inhibit the intestinal farnesoid X receptor(FXR)-fibroblast growth factor(FGF)15 signaling pathway.Further analysis revealed that FSO activated FXR in the liver and regulated downstream gene expression(SHP,SREBP-1c,and CPT-1a),which promoted lipolysis and inhibited lipogenesis.The results of this study suggest that FSO modulates serum lipid concentrations by regulating the gut microbiota,FXR-FGF15 signaling and BA metabolism.展开更多
This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU))....This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.展开更多
Linusorbs(LOs),particularly the Methionine(Met)-containing yet Tryptophan(Trp)-free LO(CLB and CLP),play a significant role in shaping the quality and sensory attributes of flaxseed oil.To investigate the stability of...Linusorbs(LOs),particularly the Methionine(Met)-containing yet Tryptophan(Trp)-free LO(CLB and CLP),play a significant role in shaping the quality and sensory attributes of flaxseed oil.To investigate the stability of these LOs and their oxidized forms during accelerated oxidation,the polar fractions of crude flaxseed oil were selectively removed using silica absorption and then reintroduced separately into the oil matrix along with LOs andγ-tocopherol(γ-T).Through comprehensive analysis of oxidative stability indexes,LOs content changes,oxidation kinetics,and the correlation between LOs and oxidative stability indexes,we observed that the LOs fraction alone exhibited a moderate antioxidant effect on the peroxide value(PV)but a weaker effect on the panisidine value(p-AV)of flaxseed oil.However,upon addition ofγ-T,we observed a weak synergistic effect betweenγ-T and LOs in suppressing PV,while a stronger effect in suppressing p-AV.Additionally,a comparison of the oxidation kinetics of different LOs indicated thatγ-T preferentially protected the oxidation of CLP over CLB.Similar protective trends ofγ-T towards the methionine sulfoxide(MetO)and methionine sulfoxide(MetO2)form of LOs were also observed,albeit to a lesser extent.Correlation analysis revealed that changes in Metcontaining LOs,particularly CLP,showed a high correlation with PV in the tested matrices,while MetOcontaining LOs better depicted changes in p-AV.Importantly,CLP demonstrated higher susceptibility to the influence of antioxidants,making it more suitable for evaluating the peroxide value in flaxseed oil samples.展开更多
基金support from National Natural Science Foundation of China(32072267)supported by China Agriculture Research System of CRAS-14.
文摘Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。
文摘Flaxseed proteins and antioxidant peptides(AP)encrypted in their sequences were analysed in silico with a range of bioinformatics tools to study their physicochemical properties,allergenicity,and toxicity.Nine proteases(digestive,plant and microbial sources)were assessed for their ability to release known APs from 23 mature flaxseed storage proteins using the BIOPEP database.The families of proteins identified were predominantly globulins,oleosins,and small amount of conlinin.Overall,253 APs were identified from these proteins.More peptides were released by enzymatic hydrolysis from the globulins than those from oleosins and conlinin.Compared with other enzymes studied,the plant proteases(papain,ficin,and bromelain)were found to be superior to releasing APs from the flaxseed proteins.Analysis of toxicity by ToxinPred showed that none of the peptides released was toxic.Most of the APs showed structural features that are important for antioxidation,including relatively low molecular weight(dipeptides and tripeptides only);amphipathic properties(hydrophobicity range of-0.5 to+0.5);relatively low Boman index(≤2);broad range of pI(3.7-10.8),and an abundance of antioxidant amino acid residues(e.g.glutamic acid and histidine).This study demonstrate the suitability of flaxseed proteins as a source of APs.
基金the support from National Key Research and Development Program of China(NO.2016YFD400604-02)the National Natural Science Foundation of China(NO.82003457)+1 种基金Jiangsu Province Science Foundation for Youths(NO.BK20200366)the Fundamental Research Funds for the Central Universities and“Zhishan”Scholars Programs of Southeast University.
文摘Flaxseed has displayed the potential beneficial as functional foods.However,most studies focused on effects of flaxseed extracts or ingredients in flaxseed.Besides,few studies showed that flaxseed extracts contributed to anti-type 1 diabetes(T1D),yet the underlying mechanism is still unknown.In the present study,16.7% of milled flaxseed(MF)-added diet was given to diabetic mice induced by streptozocin for 6 weeks.The results showed that MF feeding 1)slightly decreased blood glucose levels and improved the ability of glucose tolerance by oral glucose tolerance test,2)decreased liver tumor necrosis factor-αlevels and increased liver glycogen levels with significance via down-regulating TLR4/NF-κB pathways,3)and significantly altered some beneficial bacteria in gut microbiota.In conclusion,the present study showed that milled flaxseed showed the potential on anti-T1D through anti-inflammation via TLR4/NF-κB and altering the gut microbiota in STZ-induced diabetic mice.
基金supported by the Shandong Provincial Key Research and Development program(2019GHZ031)the Taishan Scholar Project(Feng-Hong Huang)+2 种基金the Natural Science Foundation of Hubei Province(2019CFB342)the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Agricultural Sciences(1610172019009)the Earmarked Fund for China Agriculture Research System(CARS-14).
文摘Flaxseed oil(FSO)rich in n-3 polyunsaturated fatty acids(PUFAs)can protect against obesity and insulin resistance,but the underlying mechanism is unknown.An integrative multiomics of the microbiome and targeted metab olomics approach was performed to investigate the possible pathway for flaxseed oil supplementation on reducing serum total cholesterol,triglyceride and epididymal adipose in high-fat diet mice.FSO ameliorated the gut microbial dysbiosis by increasing the community diversity and the abundance of Clostridiales and Ruminococcaceae.These effects were associated with the regulation of bile acid(BAs)in the feces.FSO reduced the concentrations of conjugated BAs,such as cholic acid,tauro-α-murocholic acid,and tauro-ursodesoxycholic acid in feces,which in turn inhibit the intestinal farnesoid X receptor(FXR)-fibroblast growth factor(FGF)15 signaling pathway.Further analysis revealed that FSO activated FXR in the liver and regulated downstream gene expression(SHP,SREBP-1c,and CPT-1a),which promoted lipolysis and inhibited lipogenesis.The results of this study suggest that FSO modulates serum lipid concentrations by regulating the gut microbiota,FXR-FGF15 signaling and BA metabolism.
基金financially supported by grants from the Key Scientific Research Projects of Hubei Province(2020BCA086)the National Key Research and Development Program of China(2017YFD0400200)+3 种基金Wuhan Application Fundamental Frontier Project of China(2020020601012270)the National Natural Science Foundation of China(31771938)the China Agriculture Research System of MOF and MARAthe Wuhan Achievement Transformation Project(2019030703011505)。
文摘This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.
基金supported by the National Natural Science Foundation of China (Grant No.31920103012 and 32372356)Guangzhou Basic and Applied Basic Research Foundation (Grant No.202201010535).
文摘Linusorbs(LOs),particularly the Methionine(Met)-containing yet Tryptophan(Trp)-free LO(CLB and CLP),play a significant role in shaping the quality and sensory attributes of flaxseed oil.To investigate the stability of these LOs and their oxidized forms during accelerated oxidation,the polar fractions of crude flaxseed oil were selectively removed using silica absorption and then reintroduced separately into the oil matrix along with LOs andγ-tocopherol(γ-T).Through comprehensive analysis of oxidative stability indexes,LOs content changes,oxidation kinetics,and the correlation between LOs and oxidative stability indexes,we observed that the LOs fraction alone exhibited a moderate antioxidant effect on the peroxide value(PV)but a weaker effect on the panisidine value(p-AV)of flaxseed oil.However,upon addition ofγ-T,we observed a weak synergistic effect betweenγ-T and LOs in suppressing PV,while a stronger effect in suppressing p-AV.Additionally,a comparison of the oxidation kinetics of different LOs indicated thatγ-T preferentially protected the oxidation of CLP over CLB.Similar protective trends ofγ-T towards the methionine sulfoxide(MetO)and methionine sulfoxide(MetO2)form of LOs were also observed,albeit to a lesser extent.Correlation analysis revealed that changes in Metcontaining LOs,particularly CLP,showed a high correlation with PV in the tested matrices,while MetOcontaining LOs better depicted changes in p-AV.Importantly,CLP demonstrated higher susceptibility to the influence of antioxidants,making it more suitable for evaluating the peroxide value in flaxseed oil samples.