Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo...Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.展开更多
Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most o...Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most of it neglects potential influence factors,leaving the corresponding supporting efficiency questionable.In this paper,we study the landing scheduling problem for carrier aircraft considering the effects of bolting and aerial refueling.Based on the analysis of recovery mode involving the above factors,two types of primary constraints(i.e.,fuel constraint and wake interval constraint)are first described.Then,taking the landing sequencing as decision variables,a combinatorial optimization model with a compound objective function is formulated.Aiming at an efficient solution,an improved firefly algorithm is designed by integrating multiple evolutionary operators.In addition,a dynamic replanning mechanism is introduced to deal with special situations(i.e.,the occurrence of bolting and fuel shortage),where the high efficiency of the designed algorithm facilitates the online scheduling adjustment within seconds.Finally,numerical simulations with sufficient and insufficient fuel cases are both carried out,highlighting the necessity to consider bolting and aerial refueling during the planning procedure.Simulation results reveal that a higher bolting probability,as well as extra aerial refueling operations caused by fuel shortage,will lead to longer recovery complete time.Meanwhile,due to the strong optimum-seeking capability and solution efficiency of the improved algorithm,adaptive scheduling can be generated within milliseconds to deal with special situations,significantly improving the safety and efficiency of the recovery process.An animation is accessible at bilibili.com/video/BV1QprKY2EwD.展开更多
Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support ...Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data.展开更多
Assessment of water quality by firefly algorithm based on BP neural network model(FA-BP model)is built.In this model,the evaluation index function is constructed by BP Artificial Neural Network Algorithm(BP model),and...Assessment of water quality by firefly algorithm based on BP neural network model(FA-BP model)is built.In this model,the evaluation index function is constructed by BP Artificial Neural Network Algorithm(BP model),and Firefly Algorithm(FA model)is introduced to optimize weight values and thresholds to find the optimal solution.Fuzzy Comprehensive Evaluation method,Grey Incidence Analysis Algorithm and FA-BP model will be applied to evaluate the water quality of the five main rivers in Lianyungang City including Longwei,Yudai,Dapu,Paidan,and Dongyan River.The results show that the Fuzzy Comprehensive Evaluation method is difficult to use for slight pollution rivers with several slightly over standard indexes.It will be easy to ignore the impact of extreme indexes by Grey Incidence Analysis Algorithm.FA-BP model solves the shortcomings of the two methods.The evaluation results provide an important reference for the formulation of reasonable measures.It is a relatively comprehensive evaluation method and has a good application prospect in water quality evaluation.展开更多
GM(1,1)models have been widely used in various fields due to their high performance in time series prediction.However,some hypotheses of the existing GM(1,1)model family may reduce their prediction performance in some...GM(1,1)models have been widely used in various fields due to their high performance in time series prediction.However,some hypotheses of the existing GM(1,1)model family may reduce their prediction performance in some cases.To solve this problem,this paper proposes a self-adaptive GM(1,1)model,termed as SAGM(1,1)model,which aims to solve the defects of the existing GM(1,1)model family by deleting their modeling hypothesis.Moreover,a novel multi-parameter simultaneous optimization scheme based on firefly algorithm is proposed,the proposed multi-parameter optimization scheme adopts machine learning ideas,takes all adjustable parameters of SAGM(1,1)model as input variables,and trains it with firefly algorithm.And Sobol’sensitivity indices are applied to study global sensitivity of SAGM(1,1)model parameters,which provides an important reference for model parameter calibration.Finally,forecasting capability of SAGM(1,1)model is illustrated by Anhui electricity consumption dataset.Results show that prediction accuracy of SAGM(1,1)model is significantly better than other models,and it is shown that the proposed approach enhances the prediction performance of GM(1,1)model significantly.展开更多
文摘Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.
基金the financial support of the National Natural Science Foundation of China(12102077,12161076)the Natural Science and Technology Program of Liaoning Province(2023-BS-061).
文摘Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most of it neglects potential influence factors,leaving the corresponding supporting efficiency questionable.In this paper,we study the landing scheduling problem for carrier aircraft considering the effects of bolting and aerial refueling.Based on the analysis of recovery mode involving the above factors,two types of primary constraints(i.e.,fuel constraint and wake interval constraint)are first described.Then,taking the landing sequencing as decision variables,a combinatorial optimization model with a compound objective function is formulated.Aiming at an efficient solution,an improved firefly algorithm is designed by integrating multiple evolutionary operators.In addition,a dynamic replanning mechanism is introduced to deal with special situations(i.e.,the occurrence of bolting and fuel shortage),where the high efficiency of the designed algorithm facilitates the online scheduling adjustment within seconds.Finally,numerical simulations with sufficient and insufficient fuel cases are both carried out,highlighting the necessity to consider bolting and aerial refueling during the planning procedure.Simulation results reveal that a higher bolting probability,as well as extra aerial refueling operations caused by fuel shortage,will lead to longer recovery complete time.Meanwhile,due to the strong optimum-seeking capability and solution efficiency of the improved algorithm,adaptive scheduling can be generated within milliseconds to deal with special situations,significantly improving the safety and efficiency of the recovery process.An animation is accessible at bilibili.com/video/BV1QprKY2EwD.
基金supported by the National Science Fund for Distinguished Young Scholars under Grant No.71025005the National Natural Science Foundation of China under Grant Nos.91224001 and 71301006+1 种基金National Program for Support of Top-Notch Young Professionalsthe Fundamental Research Funds for the Central Universities in BUCT
文摘Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data.
基金Research Project of Lianyungang Association for Science and Technology(Lkxyb1907)Research Project of"333 Project"of Jiangsu Province(BRA2019245)Research Project of"521"Project of Lianyungang City(LYG52105-2018090)。
文摘Assessment of water quality by firefly algorithm based on BP neural network model(FA-BP model)is built.In this model,the evaluation index function is constructed by BP Artificial Neural Network Algorithm(BP model),and Firefly Algorithm(FA model)is introduced to optimize weight values and thresholds to find the optimal solution.Fuzzy Comprehensive Evaluation method,Grey Incidence Analysis Algorithm and FA-BP model will be applied to evaluate the water quality of the five main rivers in Lianyungang City including Longwei,Yudai,Dapu,Paidan,and Dongyan River.The results show that the Fuzzy Comprehensive Evaluation method is difficult to use for slight pollution rivers with several slightly over standard indexes.It will be easy to ignore the impact of extreme indexes by Grey Incidence Analysis Algorithm.FA-BP model solves the shortcomings of the two methods.The evaluation results provide an important reference for the formulation of reasonable measures.It is a relatively comprehensive evaluation method and has a good application prospect in water quality evaluation.
基金supported by the National Natural Science Foundation of China(72171116,71671090)the Fundamental Research Funds for the Central Universities(NP2020022)+1 种基金the Key Research Projects of Humanities and Social Sciences in Anhui Education Department(SK2021A1018)Qinglan Project for Excellent Youth or Middlea ged Academic Leaders in Jiangsu Province,China.
文摘GM(1,1)models have been widely used in various fields due to their high performance in time series prediction.However,some hypotheses of the existing GM(1,1)model family may reduce their prediction performance in some cases.To solve this problem,this paper proposes a self-adaptive GM(1,1)model,termed as SAGM(1,1)model,which aims to solve the defects of the existing GM(1,1)model family by deleting their modeling hypothesis.Moreover,a novel multi-parameter simultaneous optimization scheme based on firefly algorithm is proposed,the proposed multi-parameter optimization scheme adopts machine learning ideas,takes all adjustable parameters of SAGM(1,1)model as input variables,and trains it with firefly algorithm.And Sobol’sensitivity indices are applied to study global sensitivity of SAGM(1,1)model parameters,which provides an important reference for model parameter calibration.Finally,forecasting capability of SAGM(1,1)model is illustrated by Anhui electricity consumption dataset.Results show that prediction accuracy of SAGM(1,1)model is significantly better than other models,and it is shown that the proposed approach enhances the prediction performance of GM(1,1)model significantly.