期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-singular fast terminal sliding mode control for roll-pitch seeker based on extended state observers
1
作者 XIAO Bowen XIA Qunli 《Journal of Systems Engineering and Electronics》 2025年第2期537-551,共15页
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr... For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions. 展开更多
关键词 air-to-air missile roll-pitch seeker finite-time con-vergence combined sliding mode control extended state observer
在线阅读 下载PDF
Integrated guidance and control design method based on finite-time state observer 被引量:1
2
作者 MA Ping ZHANG Denghui +1 位作者 WANG Songyan CHAO Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1251-1262,共12页
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight... A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty. 展开更多
关键词 integrated guidance and control(IGC) finite-time state observer(FTSO) back-to-turn(BTT) vehicle composited control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部