The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is pr...The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is proposed using finite difference method,based on the partly homogenization hypothesis of material,to predict temperature field in the process of drilling unidirectional carbon fiber/epoxy(C/E)composites.According to the drilling feed motion,drilling process is divided into four stages to study the temperature distributing characteristics.The results show that the temperature distribution predicted by numerical study has a good agreement with the experimental results.The temperature increases with increasing the drilling depth,and the burn phenomena is observed due to the heat accumulation,especially at the drill exit.Due to the fiber orientation,an elliptical shape of the temperature field along the direction is found for both numerical and experimental studies of C/E composites drilling process.展开更多
Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and ...Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.展开更多
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ...Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.展开更多
Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the st...Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the strain fields accurately and graphically.Strain distribution of the CT specimen was predicted by finite element method(FEM).Good agreement is observed between the surface strain fields measured by DIC and predicted by FEM,which reveals that the proposed method is practical and effective to determine the strain fields of CT specimens.Moreover,strain fields of the CT specimens with various compressive loads and notch diameters were studied by DIC.The experimental results can provide effective reference to usage of CT specimens in triaxial creep test by appropriately selecting specimen and experiment parameters.展开更多
In this paper,the electrical fields along the insulator surface under different scenarios,such as asymmetric pollution on top/bottom surface,and uneven circumferential distribution of surface pollution,have been calcu...In this paper,the electrical fields along the insulator surface under different scenarios,such as asymmetric pollution on top/bottom surface,and uneven circumferential distribution of surface pollution,have been calculated with finite element method for field simulation.Tests on artificial pollution insulators are conducted to study the 50% withstand voltage U50 of artificial pollution suspension insulators under different NSDD(non-soluble deposit density)and asymmetric pollution on the top/bottom surface,and study the change of leakage current with air humidity under different voltage and different ESDD(equivalent salt deposit density).The result shows that asymmetric top/bottom surface pollution has a greater impact on the insulator electrical field distribution,and the leakage current will jump under low air humidity,if had large ESDD,which has practical meanings to the anti-pollution design of the transmission line under different pollution levels across the country.展开更多
In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity ve...In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity vectors and stream function curves are obtained. Using the Prandtl theory, this paper derives the free jet velocity and the jet bunch width in a half-space, the latter of which is amended by experiment. The results obtained in this paper are applied to micro-type high pressure water jet cleaner and the ejector of rocket engine.展开更多
A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,...A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,a hybrid regularizations-based iterative Newton method is implemented to provide stable inverse solutions.Furthermore,a dual mesh scheme and an adjoint method are adopted to reduce the computation cost and improve the efficiency of reconstruction.Simultaneous reconstruction of both acoustic velocity and attenuation coefficient for a reinforced concrete model is achieved with multiple frequency data.The algorithm is evaluated with numerical simulation under various practical scenarios including varied transmission/receiving modes,different noise levels,different source/detector numbers,and different contrast levels between the heterogeneity and background region.Results obtained suggest that the algorithm is insensitive to noise,and the reconstructions are quantitatively accurate in terms of the location,size and acoustic properties of the target over a range of contrast levels.展开更多
In the present study,two-layered stainless steel-copper composites with a thickness of 50μm were initially subjected to annealing at 800,900 and 1000℃for 5 min,respectively,to achieve diverse microstructural feature...In the present study,two-layered stainless steel-copper composites with a thickness of 50μm were initially subjected to annealing at 800,900 and 1000℃for 5 min,respectively,to achieve diverse microstructural features.Then the influence of annealing temperature on the formability of stainless steel-copper composites and the quality of micro composite cups manufactured by micro deep drawing(MDD)were investigated,and the underlying mechanism was analyzed.Three finite element(FE)models,including basic FE model,Voronoi FE model and surface morphological FE model,were developed to analyze the forming performance of stainless steel-copper composites during MDD.The results show that the stainless steel-copper composites annealed at 900℃possess the best plasticity owing to the homogeneous and refined microstructure in both stainless steel and copper matrixes,and the micro composite cup with specimen annealed at 900℃exhibits a uniform wall thickness as well as high surface quality with the fewest wrinkles.The results obtained from the surface morphological FE model considering material inhomogeneity and surface morphology of the composites are the closest to the experimental results compared to the basic and Voronoi FE model.During MDD process,the drawing forces decrease with increasing annealing temperature as a consequence of the strength reduction.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the pr...In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming.展开更多
Given the increasing use of glass mat-reinforced thermoplastic(GMT)composites,the formability of GMT sheets is currently a topic of research.A new sheet forming process for solidified GMT was developed.In this process...Given the increasing use of glass mat-reinforced thermoplastic(GMT)composites,the formability of GMT sheets is currently a topic of research.A new sheet forming process for solidified GMT was developed.In this process,a GMT sheet was sandwiched by dummy metallic sheets during deep drawing.The dummy metallic sheets acted as protective materials and media for heating the GMT sheet.In this study,tensile tests of GMT specimens were carried out under different temperature conditions.The effect of temperature on the tensile deformation was analyzed.The effect of temperature on the deep drawing process of GMT sheets with dummy sheets was further investigated.Finite element method(FEM)was conducted to simulate the deep drawing process.In the drawing force rising stage,the law of drawing force with the depth of the drawing was analyzed using FEM and experiments.展开更多
Being aimed at the inside wall wrinkling and sinking phenomenon of palladium-yttrium alloy thin wall spiral tube used for preparation of high purity hydrogen, extraction of hydrogen isotope, and purification and separ...Being aimed at the inside wall wrinkling and sinking phenomenon of palladium-yttrium alloy thin wall spiral tube used for preparation of high purity hydrogen, extraction of hydrogen isotope, and purification and separation of hydrogen in the winding process, this article analyzed the reasons for above phenomena, established a numerical simulation model of winding process of above tube, using elastic-plastic Finite Element method analyzed the max. tensile stress and max. compression stress and their locations, thereby provides a theory base for the control of working forming course of thin wall spiral tube.展开更多
The flow stress of ferrite/pearlite steel under uni-axial tension was simulated with finite element method (FEM) by applying commercial software MARC/MENTAT. Flow stress curves of ferrite/pearlite steels were calculat...The flow stress of ferrite/pearlite steel under uni-axial tension was simulated with finite element method (FEM) by applying commercial software MARC/MENTAT. Flow stress curves of ferrite/pearlite steels were calculated based on unit cell model. The effects of volume fraction, distribution and the aspect ratio of pearlite on tensile properties have been investigated.展开更多
This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of exper...This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.展开更多
In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is emp...In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.展开更多
基金Projects(51475073,51605076,51875079)supported by the National Natural Science Foundation of ChinaProject(2017YFB1301701)supported by the National Key Research and Development Program of China
文摘The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is proposed using finite difference method,based on the partly homogenization hypothesis of material,to predict temperature field in the process of drilling unidirectional carbon fiber/epoxy(C/E)composites.According to the drilling feed motion,drilling process is divided into four stages to study the temperature distributing characteristics.The results show that the temperature distribution predicted by numerical study has a good agreement with the experimental results.The temperature increases with increasing the drilling depth,and the burn phenomena is observed due to the heat accumulation,especially at the drill exit.Due to the fiber orientation,an elliptical shape of the temperature field along the direction is found for both numerical and experimental studies of C/E composites drilling process.
文摘Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.
基金Project(61273187)supported by the National Natural Science Foundation of ChinaProject(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.
基金Projects(51575347,51405297,51204107)supported by the National Natural Science Foundation of China
文摘Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the strain fields accurately and graphically.Strain distribution of the CT specimen was predicted by finite element method(FEM).Good agreement is observed between the surface strain fields measured by DIC and predicted by FEM,which reveals that the proposed method is practical and effective to determine the strain fields of CT specimens.Moreover,strain fields of the CT specimens with various compressive loads and notch diameters were studied by DIC.The experimental results can provide effective reference to usage of CT specimens in triaxial creep test by appropriately selecting specimen and experiment parameters.
基金Project Supported by Key Technology Research Programof SGCC(SGSC[2005]115)
文摘In this paper,the electrical fields along the insulator surface under different scenarios,such as asymmetric pollution on top/bottom surface,and uneven circumferential distribution of surface pollution,have been calculated with finite element method for field simulation.Tests on artificial pollution insulators are conducted to study the 50% withstand voltage U50 of artificial pollution suspension insulators under different NSDD(non-soluble deposit density)and asymmetric pollution on the top/bottom surface,and study the change of leakage current with air humidity under different voltage and different ESDD(equivalent salt deposit density).The result shows that asymmetric top/bottom surface pollution has a greater impact on the insulator electrical field distribution,and the leakage current will jump under low air humidity,if had large ESDD,which has practical meanings to the anti-pollution design of the transmission line under different pollution levels across the country.
文摘In this paper, the internal fluid motion of a jet system is described by the Navier Stokes mechanics equations. For the simulation of the motion, the penalty function finite element method is used, and the velocity vectors and stream function curves are obtained. Using the Prandtl theory, this paper derives the free jet velocity and the jet bunch width in a half-space, the latter of which is amended by experiment. The results obtained in this paper are applied to micro-type high pressure water jet cleaner and the ejector of rocket engine.
基金Project(31200748)supported by the National Natural Science Foundation of China
文摘A finite element reconstruction algorithm for ultrasound tomography based on the Helmholtz equation in frequency domain is presented to monitor the grouting defects in reinforced concrete structures.In this algorithm,a hybrid regularizations-based iterative Newton method is implemented to provide stable inverse solutions.Furthermore,a dual mesh scheme and an adjoint method are adopted to reduce the computation cost and improve the efficiency of reconstruction.Simultaneous reconstruction of both acoustic velocity and attenuation coefficient for a reinforced concrete model is achieved with multiple frequency data.The algorithm is evaluated with numerical simulation under various practical scenarios including varied transmission/receiving modes,different noise levels,different source/detector numbers,and different contrast levels between the heterogeneity and background region.Results obtained suggest that the algorithm is insensitive to noise,and the reconstructions are quantitatively accurate in terms of the location,size and acoustic properties of the target over a range of contrast levels.
基金Projects(51975398,52105392)supported by the National Natural Science Foundation of ChinaProject(YDZJSX2021A006)supported by the Central Government Guided Local Science and Technology Development Fund Project,China+1 种基金Project(20210035)supported by the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,ChinaProject(2020-037)supported by the Fund Program for the Research Project Supported by Shanxi Scholarship Council,China。
文摘In the present study,two-layered stainless steel-copper composites with a thickness of 50μm were initially subjected to annealing at 800,900 and 1000℃for 5 min,respectively,to achieve diverse microstructural features.Then the influence of annealing temperature on the formability of stainless steel-copper composites and the quality of micro composite cups manufactured by micro deep drawing(MDD)were investigated,and the underlying mechanism was analyzed.Three finite element(FE)models,including basic FE model,Voronoi FE model and surface morphological FE model,were developed to analyze the forming performance of stainless steel-copper composites during MDD.The results show that the stainless steel-copper composites annealed at 900℃possess the best plasticity owing to the homogeneous and refined microstructure in both stainless steel and copper matrixes,and the micro composite cup with specimen annealed at 900℃exhibits a uniform wall thickness as well as high surface quality with the fewest wrinkles.The results obtained from the surface morphological FE model considering material inhomogeneity and surface morphology of the composites are the closest to the experimental results compared to the basic and Voronoi FE model.During MDD process,the drawing forces decrease with increasing annealing temperature as a consequence of the strength reduction.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming.
基金Project(CG2016003001)supported by the Ministry of Human Resources and Social Security of China
文摘Given the increasing use of glass mat-reinforced thermoplastic(GMT)composites,the formability of GMT sheets is currently a topic of research.A new sheet forming process for solidified GMT was developed.In this process,a GMT sheet was sandwiched by dummy metallic sheets during deep drawing.The dummy metallic sheets acted as protective materials and media for heating the GMT sheet.In this study,tensile tests of GMT specimens were carried out under different temperature conditions.The effect of temperature on the tensile deformation was analyzed.The effect of temperature on the deep drawing process of GMT sheets with dummy sheets was further investigated.Finite element method(FEM)was conducted to simulate the deep drawing process.In the drawing force rising stage,the law of drawing force with the depth of the drawing was analyzed using FEM and experiments.
文摘Being aimed at the inside wall wrinkling and sinking phenomenon of palladium-yttrium alloy thin wall spiral tube used for preparation of high purity hydrogen, extraction of hydrogen isotope, and purification and separation of hydrogen in the winding process, this article analyzed the reasons for above phenomena, established a numerical simulation model of winding process of above tube, using elastic-plastic Finite Element method analyzed the max. tensile stress and max. compression stress and their locations, thereby provides a theory base for the control of working forming course of thin wall spiral tube.
文摘The flow stress of ferrite/pearlite steel under uni-axial tension was simulated with finite element method (FEM) by applying commercial software MARC/MENTAT. Flow stress curves of ferrite/pearlite steels were calculated based on unit cell model. The effects of volume fraction, distribution and the aspect ratio of pearlite on tensile properties have been investigated.
文摘This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.
基金E.Martínez-Paneda acknowledges financial support from the Royal Commission for the 1851 Exhibition through their Research Fellowship programme(RF496/2018).
文摘In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.