In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the in...In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.展开更多
When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,...When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,the theoretical analysis was employed to evaluate the influence of shield tunnel underpass construction on the stability of the building,and the optimal tunneling parameters in the field construction have been obtained through the verified theoretical model and parameter analysis.First,the strip foundation of the building was simplified to the Timoshenko beam,which was taken into account the shear effect,and then the deformation displacement of the soil at the same place of strip foundation was applied to the simplified Timoshenko beam.Finally,the numerical solution of the displacement of the strip foundation was obtained by using the finite element method and verified its reliability using Euler-Bernoulli beam theoretical model,field monitoring data,and numerical simulation.Parameters analysis for the deformation and internal force of strip foundation under different types of shield machine tunneling parameters showed that the influence of the pressure of shield excavation chamber,thrust of shield,and driving speed played an important role in the deformation of the building’s strip foundation and internal force.展开更多
A new finite element model for single-layered strand was investigated for accurate and efficient mechanical behavior analysis.Mathematical model was created by sectional path-nodes sweeping and dynamic node-beam mappi...A new finite element model for single-layered strand was investigated for accurate and efficient mechanical behavior analysis.Mathematical model was created by sectional path-nodes sweeping and dynamic node-beam mapping.Geometric relations between nodes in center core wire and helical wires were deduced in tension and bending incorporating material elasticity theory and deformation geometrical compatibility.Based on Timoshenko beam theory,strand of a pitch length was modeled with specific material,geometric parameters and synthesized constraint equations defined in ANSYS software,and predetermined load cases were performed.The obtained results show that discrepancies between suggested method and Costello theory do not exceed 1.51% in tension and 6.21% in bending,which verifies the correctness and accuracy of the suggested finite element model in predicting mechanical behavior of single-layered wire strand.展开更多
文摘In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.
基金Projects(41807265,41972286,42072309)supported by the National Natural Science Foundation of ChinaProjects(HKLBEF202001,HKLBEF202002)supported by the Hubei Key Laboratory of Blasting Engineering Foundation,China。
文摘When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,the theoretical analysis was employed to evaluate the influence of shield tunnel underpass construction on the stability of the building,and the optimal tunneling parameters in the field construction have been obtained through the verified theoretical model and parameter analysis.First,the strip foundation of the building was simplified to the Timoshenko beam,which was taken into account the shear effect,and then the deformation displacement of the soil at the same place of strip foundation was applied to the simplified Timoshenko beam.Finally,the numerical solution of the displacement of the strip foundation was obtained by using the finite element method and verified its reliability using Euler-Bernoulli beam theoretical model,field monitoring data,and numerical simulation.Parameters analysis for the deformation and internal force of strip foundation under different types of shield machine tunneling parameters showed that the influence of the pressure of shield excavation chamber,thrust of shield,and driving speed played an important role in the deformation of the building’s strip foundation and internal force.
基金Project(2009J007)supported by Science and Technology Department of Railway Ministry of ChinaProject(U1134203)supported by Joint Fund of High-speed Railway Fundamental Research,China
文摘A new finite element model for single-layered strand was investigated for accurate and efficient mechanical behavior analysis.Mathematical model was created by sectional path-nodes sweeping and dynamic node-beam mapping.Geometric relations between nodes in center core wire and helical wires were deduced in tension and bending incorporating material elasticity theory and deformation geometrical compatibility.Based on Timoshenko beam theory,strand of a pitch length was modeled with specific material,geometric parameters and synthesized constraint equations defined in ANSYS software,and predetermined load cases were performed.The obtained results show that discrepancies between suggested method and Costello theory do not exceed 1.51% in tension and 6.21% in bending,which verifies the correctness and accuracy of the suggested finite element model in predicting mechanical behavior of single-layered wire strand.