A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such a...A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.展开更多
基金Project (SPKJ 016-06) supported by the Key Research Project of State Power CorporationProject (2004AC101D31) supported the Key Scientific Research Project of Hubei Province, China
文摘A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.