In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh...Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.展开更多
A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among t...A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.展开更多
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ...In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi...Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.展开更多
The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation locatio...The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.展开更多
This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical res...This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical results indicate that unique two-times heating process is gradually experienced in the area between two adjacent grating stripes. However, there is a little change for the temperature field along the depth direction for the diamond film due to its great thermal conductivity. It further finds that the thickness of the diamond film has a significant influence on the temperature field in diamond/ZnSe system. The results are useful for the application of laser-induced TTG technique in film/substrate system.展开更多
In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the in...In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.展开更多
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction...This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of selfadaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.展开更多
We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. ...We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.展开更多
The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simpl...The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).展开更多
Finite element analysis(FEA) method was employed to perform three-dimensional(3D) electric field simulations for gas detectors with multiple wire electrodes.A new element refinement method developed for use in conjunc...Finite element analysis(FEA) method was employed to perform three-dimensional(3D) electric field simulations for gas detectors with multiple wire electrodes.A new element refinement method developed for use in conjunction with the FEA program ANSYS allows successful meshing of the wires without physically inputting the wires in the chamber geometry. First, we demonstrate a model with only one wire, for which we calculate the potential distributions on the central plane and the end-cap region. The results are compared to the calculations obtained using GARFIELD, a two-dimensional program that uses the nearly exact boundary element method. Then we extend the method to same model, but with seven wires.Our results suggest that the new method can be applied easily to the 3D electric field calculations for complicated gas detectors with many wires and complicated geometry such as multiwire proportional chambers and time projection chambers.展开更多
针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二...针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。展开更多
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
文摘Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.
基金Sponsored by the Ministerial Level Foundation(40402020105)
文摘A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.
文摘In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
基金Otokar Otomotiv ve Savunma Sanayi A.S. for the financial support
文摘Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.
文摘The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374041 and 10574071)
文摘This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical results indicate that unique two-times heating process is gradually experienced in the area between two adjacent grating stripes. However, there is a little change for the temperature field along the depth direction for the diamond film due to its great thermal conductivity. It further finds that the thickness of the diamond film has a significant influence on the temperature field in diamond/ZnSe system. The results are useful for the application of laser-induced TTG technique in film/substrate system.
文摘In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.
基金FAPESP (Fundacào de Amparo à Pesquisa do Estado de Sào Paulo)(Grant No.98/07789-7)
文摘This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of selfadaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
文摘We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .5 96 780 39) .
文摘The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).
基金supported by the National Nature Science Foundation of China(No.11605009)China Scholarship Council,the U.S.Department of Energy under Grant No.DE-SC0014530+1 种基金the National Science Foundation(No.PHY-1565546)the Fundamental Research Funds for the Central Universities(No.2018NTST08)
文摘Finite element analysis(FEA) method was employed to perform three-dimensional(3D) electric field simulations for gas detectors with multiple wire electrodes.A new element refinement method developed for use in conjunction with the FEA program ANSYS allows successful meshing of the wires without physically inputting the wires in the chamber geometry. First, we demonstrate a model with only one wire, for which we calculate the potential distributions on the central plane and the end-cap region. The results are compared to the calculations obtained using GARFIELD, a two-dimensional program that uses the nearly exact boundary element method. Then we extend the method to same model, but with seven wires.Our results suggest that the new method can be applied easily to the 3D electric field calculations for complicated gas detectors with many wires and complicated geometry such as multiwire proportional chambers and time projection chambers.
文摘针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.