A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two pha...A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two phase-current sensors are indispensable for MPTC.In response to only one phase current sensor available and the change of stator resistance,a novel adaptive observer for estimating the remaining two phase currents and time-varying stator resistance is proposed to perform MPTC.Moreover,in view of the variation of system parameters and external disturbance,a new GFTSM-based speed regulator is synthesized to enhance the drive system robustness.In this paper,the GFTSM,based on sliding mode theory,employs the fast terminal sliding mode in both the reaching stage and the sliding stage.The resultant GFTSM-based MPTC PMSM drive system with single phase current sensor has excellent dynamical performance which is very close to the GFTSM-based MPTC PMSM drive system with two-phase current sensors.On the other hand,compared with proportional-integral(PI)-based and sliding mode(SM)-based MPTC PMSM drive systems,it possesses better dynamical response and stronger robustness as well as smaller total harmonic distortion(THD)index of three-phase stator currents in the presence of variation of load torque.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提...为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提出一种基于有限控制集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)原理对系统换流器桥臂晶体管开关状态进行控制的系统直流电压稳定控制策略。该策略结合机侧整流器及并网逆变器的电流预测模型,以换流器输出电流为控制变量构造代价函数,以代价函数为优化目标,为避免计算时延导致的控制延时,引入延时补偿提高控制准确度,并引入权重系数实现多目标优化,通过遍历计算产生最优开关组合信号触发换流器。在Matlab/Simulink中建立全直流风电系统的仿真模型,在不同工况下,对所提策略与传统PI控制进行对比仿真分析,仿真结果有效验证了所提控制策略的静态性能及动态性能。展开更多
基金supported by the National Natural Science Foundation of China(61463025).
文摘A global fast terminal sliding mode(GFTSM)-based model predictive torque control(MPTC)strategy is developed for permanent magnet synchronous motor(PMSM)drive system with only one phase current sensor.Generally two phase-current sensors are indispensable for MPTC.In response to only one phase current sensor available and the change of stator resistance,a novel adaptive observer for estimating the remaining two phase currents and time-varying stator resistance is proposed to perform MPTC.Moreover,in view of the variation of system parameters and external disturbance,a new GFTSM-based speed regulator is synthesized to enhance the drive system robustness.In this paper,the GFTSM,based on sliding mode theory,employs the fast terminal sliding mode in both the reaching stage and the sliding stage.The resultant GFTSM-based MPTC PMSM drive system with single phase current sensor has excellent dynamical performance which is very close to the GFTSM-based MPTC PMSM drive system with two-phase current sensors.On the other hand,compared with proportional-integral(PI)-based and sliding mode(SM)-based MPTC PMSM drive systems,it possesses better dynamical response and stronger robustness as well as smaller total harmonic distortion(THD)index of three-phase stator currents in the presence of variation of load torque.The simulation results validate the feasibility and effectiveness of the proposed scheme.
文摘为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提出一种基于有限控制集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)原理对系统换流器桥臂晶体管开关状态进行控制的系统直流电压稳定控制策略。该策略结合机侧整流器及并网逆变器的电流预测模型,以换流器输出电流为控制变量构造代价函数,以代价函数为优化目标,为避免计算时延导致的控制延时,引入延时补偿提高控制准确度,并引入权重系数实现多目标优化,通过遍历计算产生最优开关组合信号触发换流器。在Matlab/Simulink中建立全直流风电系统的仿真模型,在不同工况下,对所提策略与传统PI控制进行对比仿真分析,仿真结果有效验证了所提控制策略的静态性能及动态性能。