This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknow...This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.展开更多
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa...Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.展开更多
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering l...A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability.展开更多
To facilitate the commercialization of wave energy in an array or farm environment, effective control strategies for improving energy extraction efficiency of the system are important. In this paper, we develop and ap...To facilitate the commercialization of wave energy in an array or farm environment, effective control strategies for improving energy extraction efficiency of the system are important. In this paper, we develop and apply model-predictive control(MPC) to a heaving point-absorber array, where the optimization problem is cast into a convex quadratic programming(QP)formulation,which can be efficiently solved by a standard QP solver. We introduced a term for penalizing large slew rates in the cost function to ensure the convexity of this function. Constraints on both range of the states and the input capacity can be accommodated. The convex formulation reduces the computational hurdles imposed on conventional nonlinear MPC. For illustration of the control principles,a point-absorber approximation is adopted to simplify the representation of the hydrodynamic coefficients among the array by exploiting the small devices to wavelength assumption. The energycapturing capabilities of a two-cylinder array in regular and irregular waves are investigated. The performance of the MPC for this two-WEC array is compared to that for a single WEC, and the behavior of the individual devices in head or beam wave configuration is explained. Also shown is the reactive power required by the power takeoff system to achieve the performance.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-freque...This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform. Second, a model predictive controller was designed based on a model which took the constraints of the system into account. Third, simulation was carried out to demonstrate the feasibility of the controller. The results show that the model predictive controller has good performance and good at dealing with the constraints or the system.展开更多
The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated...The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.展开更多
In this paper, model-predictive control(MPC) is proposed for controlling power source of accelerators. The system state equation is employed as the predictive model. With MPC, the difference between possible output an...In this paper, model-predictive control(MPC) is proposed for controlling power source of accelerators. The system state equation is employed as the predictive model. With MPC, the difference between possible output and the ideal output is forecasted and decreased, so that the system can trace the ideal trail as closely and quickly as possible. The results of simulations and experiments show that this method can reduce influence of low frequency noise.展开更多
A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximate...A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.展开更多
This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences withi...This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences within the control horizon were described using cubic spline interpolation to enlarge the predictive horizon. Verification of the proposed scheme in the face of exogenous disturbances and modeling error with inaccurate string length was demonstrated by both simulations and experiments.展开更多
A tight formation of unmanned aerial vehicles(UAVs) has many advantages, such as fuel saving and deceiving enemy radar during battlefield entry. As a result, research on UAVs in close formation has received much atten...A tight formation of unmanned aerial vehicles(UAVs) has many advantages, such as fuel saving and deceiving enemy radar during battlefield entry. As a result, research on UAVs in close formation has received much attention, and the controller design for formation holding has become a popular research topic in the control field. However, there are many unknown disturbances in tight formation, and the tail aircraft is disturbed by the wake. This paper establishes a mathematical model of wake vortices for tail aircraft that considers uncertainty and strong interference. Two UAVs are simulated by Computational Fluid Dynamics software, followed by the design of a semiphysical simulation model predictive control(MPC) scheme that suppresses uncertainty and interference sufficiently to enable the tail aircraft to accurately track the lead aircraft and maintain a stable, tight formation. The tight formation controller is verified by numerical simulation and semiphysical simulation. The results show that the designed controller has an excellent control effect in the case of disturbance caused by the wake vortex.展开更多
In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is base...In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.展开更多
Model predictive control(MPC)has been widely used in process industry,but its appli-cations to missile guidance law are relatively rare.In this paper,MPC is introduced to design defen-sive guidance law in a three-body...Model predictive control(MPC)has been widely used in process industry,but its appli-cations to missile guidance law are relatively rare.In this paper,MPC is introduced to design defen-sive guidance law in a three-body engagement,where a defending missile(i.e.,defender)is employed to protect a target aircraft from an attacking missile.Based on nonlinear kinematic equa-tions,an explicit linear discrete-time model is derived as the predictive model.Then the defensive guidance problem is formulated as a quadratic programming problem,and a fast algorithm for the MPC guidance law is developed.The advantages of the MPC guidance law include the applicabil-ity to scenarios with unknown guidance strategy of attacking missile,nonlinear kinematics and mul-tiple constraints.Another key feature is that the proposed approach does not require alteration in the target maneuver.Simulation results show that the MPC guidance law works well and can meet real-time requirements.展开更多
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ...A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.展开更多
This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems,...This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.展开更多
This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstruc...This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstructured grids which can be used for representing any complexity of reservoir geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent heterogeneity of the reservoirs, all operations related to discretization are performed at the element level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this method and its application for incompressible and immiscible two-phase flow simulation in homogeneous and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark waterflooding problem. The numerical results show that the formulation presented here is efficient and accurate for solving the bubble point and three-phase coning problems.展开更多
The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of th...The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.展开更多
文摘This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.
基金supported by the National Natural Science Foundationof China(62273029).
文摘Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金Supported by the National Natural Science Foundation of China(51275041,61304194)the Doctoral Fund of Ministry of Education of China(20121101120015)the Fundamental Research Funds from Beijing Institute of Technology(20120342011)
文摘A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability.
文摘To facilitate the commercialization of wave energy in an array or farm environment, effective control strategies for improving energy extraction efficiency of the system are important. In this paper, we develop and apply model-predictive control(MPC) to a heaving point-absorber array, where the optimization problem is cast into a convex quadratic programming(QP)formulation,which can be efficiently solved by a standard QP solver. We introduced a term for penalizing large slew rates in the cost function to ensure the convexity of this function. Constraints on both range of the states and the input capacity can be accommodated. The convex formulation reduces the computational hurdles imposed on conventional nonlinear MPC. For illustration of the control principles,a point-absorber approximation is adopted to simplify the representation of the hydrodynamic coefficients among the array by exploiting the small devices to wavelength assumption. The energycapturing capabilities of a two-cylinder array in regular and irregular waves are investigated. The performance of the MPC for this two-WEC array is compared to that for a single WEC, and the behavior of the individual devices in head or beam wave configuration is explained. Also shown is the reactive power required by the power takeoff system to achieve the performance.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金Supported by the Basic Research Foundation of Central University(HEUCFZ1003)
文摘This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform. Second, a model predictive controller was designed based on a model which took the constraints of the system into account. Third, simulation was carried out to demonstrate the feasibility of the controller. The results show that the model predictive controller has good performance and good at dealing with the constraints or the system.
基金supported in part by the National Key Research and Development Program of China(No.2017YFE0300104)in part by National Natural Science Foundation of China(No.51821005)。
文摘The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.
基金Supported by National Natural Science Foundation of China(No.11027508)
文摘In this paper, model-predictive control(MPC) is proposed for controlling power source of accelerators. The system state equation is employed as the predictive model. With MPC, the difference between possible output and the ideal output is forecasted and decreased, so that the system can trace the ideal trail as closely and quickly as possible. The results of simulations and experiments show that this method can reduce influence of low frequency noise.
基金the Natural Science Foundation of China (No.50636010)
文摘A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.
基金supported by“MOST”for the support under Grants No.MOST 104-2632-B-468-001,No.MOST 103-2221-E-468-009-MY2,No.MOST 104-2221-E-182-008-MY2,No.MOST 105-2221-E-468-009,No.MOST 106-2221-E-468-023,No.MOST 106-2221-E-182-033Chang Gung Memorial Hospital under Grant No.CMRPD2C0053
文摘This paper investigated the implementation of an adaptive predictive controller using nonlinear dynamic echo state neural (ESN) model for a rotary crane system by the visual servo method. The control sequences within the control horizon were described using cubic spline interpolation to enlarge the predictive horizon. Verification of the proposed scheme in the face of exogenous disturbances and modeling error with inaccurate string length was demonstrated by both simulations and experiments.
基金funded by the National Natural Science Foundation of China (Grant Nos. 62173277 and 61573286)the Natural Science Foundation of Shaanxi Province (Grant No. 2022JM-011)+1 种基金the Aeronautical Science Foundation of China (Grant No. 201905053004)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘A tight formation of unmanned aerial vehicles(UAVs) has many advantages, such as fuel saving and deceiving enemy radar during battlefield entry. As a result, research on UAVs in close formation has received much attention, and the controller design for formation holding has become a popular research topic in the control field. However, there are many unknown disturbances in tight formation, and the tail aircraft is disturbed by the wake. This paper establishes a mathematical model of wake vortices for tail aircraft that considers uncertainty and strong interference. Two UAVs are simulated by Computational Fluid Dynamics software, followed by the design of a semiphysical simulation model predictive control(MPC) scheme that suppresses uncertainty and interference sufficiently to enable the tail aircraft to accurately track the lead aircraft and maintain a stable, tight formation. The tight formation controller is verified by numerical simulation and semiphysical simulation. The results show that the designed controller has an excellent control effect in the case of disturbance caused by the wake vortex.
基金Supported by National Natural Science Foundation of China(61873006,61673053)National Key Research and Development Project(2018YFC1602704,2018YFB1702704)。
文摘In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.
基金supported by the National Natural Science Foundation of China(No.61673146)Zhejiang Provincial University Research Foundation(GK209907299001-021).
文摘Model predictive control(MPC)has been widely used in process industry,but its appli-cations to missile guidance law are relatively rare.In this paper,MPC is introduced to design defen-sive guidance law in a three-body engagement,where a defending missile(i.e.,defender)is employed to protect a target aircraft from an attacking missile.Based on nonlinear kinematic equa-tions,an explicit linear discrete-time model is derived as the predictive model.Then the defensive guidance problem is formulated as a quadratic programming problem,and a fast algorithm for the MPC guidance law is developed.The advantages of the MPC guidance law include the applicabil-ity to scenarios with unknown guidance strategy of attacking missile,nonlinear kinematics and mul-tiple constraints.Another key feature is that the proposed approach does not require alteration in the target maneuver.Simulation results show that the MPC guidance law works well and can meet real-time requirements.
文摘A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
基金Project supported by the Key Program for the National Natural Science Foundation of China(Grant No.61333003)the General Program for the National Natural Science Foundation of China(Grant No.61273104)
文摘This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.
基金Iranian Offshore OilCompany (IOOC) for financial support of this work
文摘This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstructured grids which can be used for representing any complexity of reservoir geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent heterogeneity of the reservoirs, all operations related to discretization are performed at the element level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this method and its application for incompressible and immiscible two-phase flow simulation in homogeneous and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark waterflooding problem. The numerical results show that the formulation presented here is efficient and accurate for solving the bubble point and three-phase coning problems.
基金supported by the National Natural Science Foundation of China(No.61903291)Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.