With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node an...当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node and Edge Features,NE-GraphSAGE)用于浏览器指纹追踪。首先以浏览器指纹为节点、指纹之间特征相似度为边构建图数据。其次对图神经网络中的GraphSAGE算法进行改进使其不仅能关注节点特征,而且能捕获边缘信息并对边缘分类,从而识别指纹。最后将NE-GraphSAGE算法与Eckersley算法、FPStalker算法和LSTM算法进行对比,验证NE-GraphSAGE算法的识别效果。实验结果表明,NE-GraphSAGE算法在准确率和追踪时长上均有不同程度的提升,最大追踪时长可达80天,相比其他3种算法性能更优,验证了NE-GraphSAGE算法对浏览器指纹长期追踪的能力。展开更多
本文提出了一种基于随机指纹模型的Wu and Manber(WM)算法(Randomizing Fingerprint WM,RFPWM),它通过为每一个模式串计算唯一指纹可以有效降低误报率.与WM算法相比,RFP-WM算法极大地降低了哈希冲突率,提高了命中率,在海量模式集上这一...本文提出了一种基于随机指纹模型的Wu and Manber(WM)算法(Randomizing Fingerprint WM,RFPWM),它通过为每一个模式串计算唯一指纹可以有效降低误报率.与WM算法相比,RFP-WM算法极大地降低了哈希冲突率,提高了命中率,在海量模式集上这一效果更为显著.实验结果表明,相对于传统WM算法,该算法的匹配效率更高,而且模式集的规模越大,性能越优越.展开更多
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
文摘数字图像后处理流程带来的非唯一性人造(Non-Unique Artifacts,NUAs)噪声掺杂在具有唯一性、稳定性的光响应非均质性(Photo-Response Non-Uniformity,PRNU)指纹中,极大地影响了下游成像设备溯源任务的精确性。然而,现有NUAs抑制方案主要针对实验环境,不仅需要额外的超参数设定,而且需额外的算力和存储空间,难以在开放环境中实际应用。为解决该问题,提出了一种面向开放环境的PRNU指纹提纯算法。首先,对现有PRNU指纹相关性度量指标即峰值相关能量比(Peak-to-Correlation Energy Ratio,PCE)进行改进,提出了基于归一化的PCE_norm和PCE_denuas,以实现开放环境下的自适应相关性度量。然后,通过构建对比学习机制缩小同一指纹和放大不同指纹的距离,实现NUAs离线抑制,从而在溯源任务中不需额外计算和存储成本进行在线抑制。最后,通过在Dresden和Daxing数据集上的实验证明了所提算法的有效性和鲁棒性。
文摘当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node and Edge Features,NE-GraphSAGE)用于浏览器指纹追踪。首先以浏览器指纹为节点、指纹之间特征相似度为边构建图数据。其次对图神经网络中的GraphSAGE算法进行改进使其不仅能关注节点特征,而且能捕获边缘信息并对边缘分类,从而识别指纹。最后将NE-GraphSAGE算法与Eckersley算法、FPStalker算法和LSTM算法进行对比,验证NE-GraphSAGE算法的识别效果。实验结果表明,NE-GraphSAGE算法在准确率和追踪时长上均有不同程度的提升,最大追踪时长可达80天,相比其他3种算法性能更优,验证了NE-GraphSAGE算法对浏览器指纹长期追踪的能力。
文摘本文提出了一种基于随机指纹模型的Wu and Manber(WM)算法(Randomizing Fingerprint WM,RFPWM),它通过为每一个模式串计算唯一指纹可以有效降低误报率.与WM算法相比,RFP-WM算法极大地降低了哈希冲突率,提高了命中率,在海量模式集上这一效果更为显著.实验结果表明,相对于传统WM算法,该算法的匹配效率更高,而且模式集的规模越大,性能越优越.