Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the pre...Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the present study was to elucidate the mechanisms of the formation of the upper elevation limit of non-treeline tree species,Picea jezoensis,and the carbon allocation strategies of the species on Changbai Mountain.We employed the^(13)C in situ pulse labeling technique to trace the distribution of photosynthetically assimilated carbon in Picea jezoensis at different elevational positions(tree species at its upper elevation limit(TSAUE,1,700 m a.s.l.)under treeline ecotone;tree species at a lower elevation position(TSALE,1,400 m a.s.l.).We analyzed^(13)C and the non-structural carbohydrate(NSC)concentrations in various tissues following labeling.Our findings revealed a significant shift in carbon allocation in TSAUE compared to TSALE.There was a pronounced increase inδ^(13)C allocation to belowground components(roots,soil,soil respiration)in TSAUE compared to TSALE.Furthermore,the C flow rate within the plant-soil-atmosphere system was faster,and the C residence time in the plant was shorter in TSAUE.The trends indicate enhanced C sink activity in belowground tissues in TSAUE,with newly assimilated C being preferentially directed there,suggesting a more conservative C allocation strategy by P.jezoensis at higher elevations under harsher environments.Such a strategy,prioritizing C storage in roots,likely aids in withstanding winter cold stress at the expense of aboveground growth during the growing season,leading to reduced growth of TSAUE compared to TSALE.The results of the present study shed light on the adaptive mechanisms governing the upper elevation limits of non-treeline trees,and enhances our understanding of how non-treeline species might respond to ongoing climate change.展开更多
Fast pyrolysis of biomass will produce various furan derivatives, among which 5-hydroxymethyl furfural(5-HMF) and furfural(FF) are usually the two most important compounds derived from holocellulose. In this study...Fast pyrolysis of biomass will produce various furan derivatives, among which 5-hydroxymethyl furfural(5-HMF) and furfural(FF) are usually the two most important compounds derived from holocellulose. In this study, density functional theory(DFT) calculations are utilized to reveal the formation mechanisms and pathways of 5-HMF and FF from two hexose units of holocellulose, i.e., glucose and mannose. In addition, fast pyrolysis experiments of glucose and mannose are conducted to substantiate the computational results, and the orientation of 5-HMF and FF is determined by 13C-labeled glucoses. Experimental results indicate that C1 provides the aldehyde group in both 5-HMF and FF, and FF is mainly derived from C1 to C5 segment. According to the computational results, glucose and mannose have similar reaction pathways to form 5-HMF and FF with d-fructose(DF) and 3-deoxy-glucosone(3-DG) as the key intermediates. 5-HMF and FF are formed via competing pathways. The formation of 5-HMF is more competitive than that of FF, leading to higher yield of 5-HMF than FF from both hexoses. In addition, compared with glucose,mannose can form 5-HMF and FF via extra pathways because of the epimerization at C2 position. Therefore, mannose pyrolysis results in higher yields of 5-HMF and FF than glucose pyrolysis.展开更多
基金supported by the National Natural Science Foundation of China(Grant numbers 4237105242271100+3 种基金4197112442371095)the Natural Science Foundation of Jilin Province,China(Nos.YDZJ202201ZYTS483YDZJ202201ZYTS470)。
文摘Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the present study was to elucidate the mechanisms of the formation of the upper elevation limit of non-treeline tree species,Picea jezoensis,and the carbon allocation strategies of the species on Changbai Mountain.We employed the^(13)C in situ pulse labeling technique to trace the distribution of photosynthetically assimilated carbon in Picea jezoensis at different elevational positions(tree species at its upper elevation limit(TSAUE,1,700 m a.s.l.)under treeline ecotone;tree species at a lower elevation position(TSALE,1,400 m a.s.l.).We analyzed^(13)C and the non-structural carbohydrate(NSC)concentrations in various tissues following labeling.Our findings revealed a significant shift in carbon allocation in TSAUE compared to TSALE.There was a pronounced increase inδ^(13)C allocation to belowground components(roots,soil,soil respiration)in TSAUE compared to TSALE.Furthermore,the C flow rate within the plant-soil-atmosphere system was faster,and the C residence time in the plant was shorter in TSAUE.The trends indicate enhanced C sink activity in belowground tissues in TSAUE,with newly assimilated C being preferentially directed there,suggesting a more conservative C allocation strategy by P.jezoensis at higher elevations under harsher environments.Such a strategy,prioritizing C storage in roots,likely aids in withstanding winter cold stress at the expense of aboveground growth during the growing season,leading to reduced growth of TSAUE compared to TSALE.The results of the present study shed light on the adaptive mechanisms governing the upper elevation limits of non-treeline trees,and enhances our understanding of how non-treeline species might respond to ongoing climate change.
基金financial support from the National Natural Science Foundation of China (51576064, 51676193)Beijing Nova Program (Z171100001117064)+2 种基金Beijing Natural Science Foundation (3172030)the Foundation of Stake Key Laboratory of Coal Combustion (FSKLCCA1706)the Fundamental Research Funds for the Central Universities (2017MS071, 2016YQ05)
文摘Fast pyrolysis of biomass will produce various furan derivatives, among which 5-hydroxymethyl furfural(5-HMF) and furfural(FF) are usually the two most important compounds derived from holocellulose. In this study, density functional theory(DFT) calculations are utilized to reveal the formation mechanisms and pathways of 5-HMF and FF from two hexose units of holocellulose, i.e., glucose and mannose. In addition, fast pyrolysis experiments of glucose and mannose are conducted to substantiate the computational results, and the orientation of 5-HMF and FF is determined by 13C-labeled glucoses. Experimental results indicate that C1 provides the aldehyde group in both 5-HMF and FF, and FF is mainly derived from C1 to C5 segment. According to the computational results, glucose and mannose have similar reaction pathways to form 5-HMF and FF with d-fructose(DF) and 3-deoxy-glucosone(3-DG) as the key intermediates. 5-HMF and FF are formed via competing pathways. The formation of 5-HMF is more competitive than that of FF, leading to higher yield of 5-HMF than FF from both hexoses. In addition, compared with glucose,mannose can form 5-HMF and FF via extra pathways because of the epimerization at C2 position. Therefore, mannose pyrolysis results in higher yields of 5-HMF and FF than glucose pyrolysis.