期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
FedCLCC:A personalized federated learning algorithm for edge cloud collaboration based on contrastive learning and conditional computing
1
作者 Kangning Yin Xinhui Ji +1 位作者 Yan Wang Zhiguo Wang 《Defence Technology(防务技术)》 2025年第1期80-93,共14页
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ... Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms. 展开更多
关键词 Federated learning Statistical heterogeneity Personalized model Conditional computing Contrastive learning
在线阅读 下载PDF
Controlling update distance and enhancing fair trainable prototypes in federated learning under data and model heterogeneity
2
作者 Kangning Yin Zhen Ding +1 位作者 Xinhui Ji Zhiguo Wang 《Defence Technology(防务技术)》 2025年第5期15-31,共17页
Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce t... Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios. 展开更多
关键词 Heterogeneous federated learning Model heterogeneity Data heterogeneity Contrastive learning
在线阅读 下载PDF
A Fast Federated Learning-based Crypto-aggregation Scheme and Its Simulation Analysis
3
作者 LüBoshen Song Xiao 《系统仿真学报》 CAS CSCD 北大核心 2024年第12期2850-2870,共21页
To solve the problem of increased computation and communication costs caused by using homomorphic encryption(HE) to protect all gradients in traditional cryptographic aggregation(cryptoaggregation) schemes,a fast cryp... To solve the problem of increased computation and communication costs caused by using homomorphic encryption(HE) to protect all gradients in traditional cryptographic aggregation(cryptoaggregation) schemes,a fast crypto-aggregation scheme called RandomCrypt was proposed.RandomCrypt performed clipping and quantization to fix the range of gradient values and then added two types of noise on the gradient for encryption and differential privacy(DP) protection.It conducted HE on noise keys to revise the precision loss caused by DP protection.RandomCrypt was implemented based on a FATE framework,and a hacking simulation experiment was conducted.The results show that the proposed scheme can effectively hinder inference attacks while ensuring training accuracy.It only requires 45%~51% communication cost and 5%~23% computation cost compared with traditional schemes. 展开更多
关键词 federated learning differential privacy homomorphic encryption inference attack hacking simulation
在线阅读 下载PDF
区块链赋能联邦学习:方法、挑战与展望 被引量:2
4
作者 孙恩昌 董潇炫 +2 位作者 张卉 李梦思 张冬英 《北京工业大学学报》 北大核心 2025年第3期337-349,共13页
针对区块链技术与联邦学习(federated learning,FL)结合后在安全、隐私等方面存在的问题,对区块链赋能FL中的相关方法进行综述与分析。首先,分别阐述了FL和区块链,并在此基础上总结了区块链赋能FL的前沿通用架构;其次,研究了目前安全、... 针对区块链技术与联邦学习(federated learning,FL)结合后在安全、隐私等方面存在的问题,对区块链赋能FL中的相关方法进行综述与分析。首先,分别阐述了FL和区块链,并在此基础上总结了区块链赋能FL的前沿通用架构;其次,研究了目前安全、隐私、激励以及效率方法的进展,分析了各方法的优缺点;最后,指出了区块链赋能FL目前存在的问题,提出了解决方案,并进行了展望。 展开更多
关键词 联邦学习(federated learning FL) 区块链 数据安全 数据隐私 激励机制 效率
在线阅读 下载PDF
基于联邦学习的毫米波大规模MIMO的混合波束赋形和资源分配
5
作者 孙艳华 乔兰 +2 位作者 杨睿哲 司鹏搏 张延华 《北京工业大学学报》 CAS CSCD 北大核心 2023年第8期851-861,共11页
针对大规模毫米波(millimeter wave,mm-Wave)多输入多输出(multiple input multiple output,MIMO)系统中的混合波束赋形在中心式机器学习(centralized machine learning,CML)中导致的通信开销过大问题,提出了分层联邦学习(federated lea... 针对大规模毫米波(millimeter wave,mm-Wave)多输入多输出(multiple input multiple output,MIMO)系统中的混合波束赋形在中心式机器学习(centralized machine learning,CML)中导致的通信开销过大问题,提出了分层联邦学习(federated learning,FL)框架下的混合波束赋形与基于合同理论的资源分配优化方法。首先,在分层系统中对多用户计算系统开销,并通过优化分配资源实现系统的效益最大化;然后,用户利用分配的资源对信道数据和相应的预编码数据进行反向传播神经网络(back propagation neural network,BPNN)模型训练,利用边缘服务器(edge server,ES)收集用户训练的权值和参数进行边缘聚合,达到一定精度后上传到云服务器(cloud server,CS)进行云聚合,直到取得最优的模型。实验结果表明,资源优化极大地降低了通信开销,并且基于FL的混合波束赋形不仅取得了和CML类似的和速率,而且其和速率要优于基于正交匹配追踪(orthogonal matching pursuit,OMP)的混合波束赋形以及全数字波束赋形方案。 展开更多
关键词 联邦学习(federated learning FL) 毫米波(millimeter wave mm-Wave) 多输入多输出(multiple input multiple output MIMO) 资源分配 混合波束赋形 合同理论
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部