提出了一种改进的ReliefF算法,并将其用于雷达高分辨距离像(high resolution range profile,HRRP)目标识别。与传统ReliefF算法相比,新算法通过在每类目标中等距离间隔抽取相同数量样本的方式进行权值累积,降低了样本数量及分布差异等...提出了一种改进的ReliefF算法,并将其用于雷达高分辨距离像(high resolution range profile,HRRP)目标识别。与传统ReliefF算法相比,新算法通过在每类目标中等距离间隔抽取相同数量样本的方式进行权值累积,降低了样本数量及分布差异等因素对特征权值的影响,得到了更稳定有效的特征权值。利用此权值不但可降低特征向量维数,并可对最小距离分类器加权,提高目标识别率。最后,对5种不同飞机实测数据的识别结果表明本算法可达到83%的平均识别率。展开更多
多标记分类问题需要为每个实例分配多个标记.常见的多标记分类方法主要分为算法转换法和问题转换法两类.合理利用标记间的依赖关系是提升多标记分类性能的关键.在该文中,作者从不同的问题转化方法的角度,将标记间依赖关系的利用方法分...多标记分类问题需要为每个实例分配多个标记.常见的多标记分类方法主要分为算法转换法和问题转换法两类.合理利用标记间的依赖关系是提升多标记分类性能的关键.在该文中,作者从不同的问题转化方法的角度,将标记间依赖关系的利用方法分为标记分组法和属性空间扩展法两种.作者发现,对于属性空间扩展法,普遍存在的难题在于如何对标记间的依赖关系进行准确度量,并选择合适的标记集合加入到属性空间中.在此基础上,作者提出了一种基于ReliefF剪枝的多标记分类算法(ReliefF based Stacking,RFS).算法从属性选择的角度,利用ReliefF方法对标记间的依赖关系进行度量,进而选择依赖关系较强的标记加入到原始属性空间中.在9个多标记基准数据集上的实验结果显示,RFS算法相较于当下流行的多标记分类算法具有较为明显的优势.展开更多
文摘提出了一种改进的ReliefF算法,并将其用于雷达高分辨距离像(high resolution range profile,HRRP)目标识别。与传统ReliefF算法相比,新算法通过在每类目标中等距离间隔抽取相同数量样本的方式进行权值累积,降低了样本数量及分布差异等因素对特征权值的影响,得到了更稳定有效的特征权值。利用此权值不但可降低特征向量维数,并可对最小距离分类器加权,提高目标识别率。最后,对5种不同飞机实测数据的识别结果表明本算法可达到83%的平均识别率。
文摘多标记分类问题需要为每个实例分配多个标记.常见的多标记分类方法主要分为算法转换法和问题转换法两类.合理利用标记间的依赖关系是提升多标记分类性能的关键.在该文中,作者从不同的问题转化方法的角度,将标记间依赖关系的利用方法分为标记分组法和属性空间扩展法两种.作者发现,对于属性空间扩展法,普遍存在的难题在于如何对标记间的依赖关系进行准确度量,并选择合适的标记集合加入到属性空间中.在此基础上,作者提出了一种基于ReliefF剪枝的多标记分类算法(ReliefF based Stacking,RFS).算法从属性选择的角度,利用ReliefF方法对标记间的依赖关系进行度量,进而选择依赖关系较强的标记加入到原始属性空间中.在9个多标记基准数据集上的实验结果显示,RFS算法相较于当下流行的多标记分类算法具有较为明显的优势.