期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
我国传统家具文化融合艺术特征探析
1
作者 李军 刘垚青 +1 位作者 郝水菊 覃祺 《林产工业》 北大核心 2025年第6期69-74,共6页
我国传统家具承载着优秀的中华物质与非物质文化遗产,其文化形式由材料、工艺、结构、装饰共同组成,凝结着中华民族的造物智慧及工艺技巧,蕴含着优秀的文化、技艺、装饰艺术基因,其表现特征也反映出了中华民族不同历史时期的艺术及文化... 我国传统家具承载着优秀的中华物质与非物质文化遗产,其文化形式由材料、工艺、结构、装饰共同组成,凝结着中华民族的造物智慧及工艺技巧,蕴含着优秀的文化、技艺、装饰艺术基因,其表现特征也反映出了中华民族不同历史时期的艺术及文化内涵。研究了我国文化交流在传统家具上的体现以及我国传统家具中文化融合的艺术特征,并将其归纳为三个方面的交融:朴素唯物崇拜与宗教艺术、农耕文化与游牧文化、欧洲宫廷家具艺术与我国传统家具文化,以期为我国传统家具的研究提供新视角,为解读传统家具艺术内涵探索新途径。 展开更多
关键词 传统家具 造型 结构 装饰 融合性特征
在线阅读 下载PDF
基于多尺度渐近金字塔的太阳电池缺陷检测网络
2
作者 朱磊 耿萃萃 +3 位作者 李博涛 潘杨 张博 姚丽娜 《太阳能学报》 北大核心 2025年第5期267-274,共8页
以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关... 以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关注重点区域的同时减少参数量的引入;最后提出一种改进渐近金字塔网络AFPNa结构,缓解网络在特征融合过程中信息的丢失或退化问题,提升缺陷检测精度。实验结果表明,与YOLOv8原模型及RTMDET等7种先进检测网络相比,MSANet具有更高的检测精度,相较原模型均值平均精度提升5.7个百分点。 展开更多
关键词 缺陷检测 深度学习 太阳电池 分层特征融合结构 多尺度渐近金字塔 空间注意力机制
在线阅读 下载PDF
基于多特征融合的外来入侵植物细粒度命名实体识别
3
作者 尚俊平 程春畅 +3 位作者 卢洋 席磊 程金鹏 刘合兵 《农业工程学报》 北大核心 2025年第12期230-239,共10页
外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模... 外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模型(invasive alien plant fine-grained named entity recognition model based on multi-feature fusion,IAPMFF)。首先,采用RoBERTa(Robustly optimized BERT approach,RoBERTa)预训练模型为基础架构,通过构建领域专用词典并通过词汇特征向量融合,增强模型对低频词及专业术语的表征能力;其次,设计双通道特征提取层,利用双向长短时记忆网络(Bi-directional long-short term memory,BiLSTM)提取长序列语义特征,结合卷积残差结构(convolution residual structure,CRS)捕获更多细粒度特征;然后,设计分层特征融合机制,通过多头自注意力机制加权融合两种特征向量,构建多维度语义表征;最后,采用条件随机场(conditional random field,CRF)进行序列解码优化。基于专家知识,构建包含24类细粒度实体标签的外来入侵植物命名实体识别数据集。试验表明,IAP-MFF模型在外来入侵植物命名实体识别数据集上取得91.51%精确率、92.51%召回率和92.01%的F1值,较基线模型分别提升4.40、3.39、3.91个百分点,显著改善了小样本细粒度实体的识别效果。在Weibo、Resume公共数据集上F1值分别达到72.75%和97.15%,表明了模型的泛化性和优越性能。IAP-MFF模型通过融合包含领域知识在内的多种特征,有效提升实体识别精度与泛化能力,为外来入侵植物知识图谱构建奠定技术基础。 展开更多
关键词 命名实体识别 多特征融合 卷积残差结构 多头自注意力机制 外来入侵植物
在线阅读 下载PDF
基于残差全局上下文注意和跨层特征融合的去雾网络
4
作者 杨燕 陈飞 《北京航空航天大学学报》 北大核心 2025年第4期1048-1058,共11页
基于深度学习的图像去雾算法通常在提取特征时使用传统的卷积层,容易造成图像的细节和边缘等信息丢失,提取特征时忽略图像的位置信息,融合特征时忽略图像原始信息,不能恢复出结构完整、清晰的高质量无雾图像。针对该问题,提出了一种基... 基于深度学习的图像去雾算法通常在提取特征时使用传统的卷积层,容易造成图像的细节和边缘等信息丢失,提取特征时忽略图像的位置信息,融合特征时忽略图像原始信息,不能恢复出结构完整、清晰的高质量无雾图像。针对该问题,提出了一种基于残差全局上下文注意和跨层特征融合的去雾算法。对提出的残差全局上下文注意块串行得到残差组结构,并对网络的前2层(即浅层)进行特征提取,得到浅层丰富的上下文信息;引入坐标注意力,建立具有位置信息的注意力图,并将其应用于残差上下文特征提取,放置在网络的第3层(即深层),提取更深层次的语义信息;在网络中间层,通过跨层融合来自不同分辨率流的特征信息,增强深浅层的信息交换,达到特征增强的目的;聚合网络得到具有丰富语义信息的特征与原始输入特征,提升复原效果。在RESIDE和Haze4K数据集上的实验结果表明:所提算法在视觉效果与客观指标上都取得了较好的效果。 展开更多
关键词 图像去雾 深度学习 残差结构 注意力机制 特征融合
在线阅读 下载PDF
基于结构多维特征构建图卷积神经网络的结构损伤识别方法
5
作者 杨建辉 赵清瑄 蒲脯林 《湖南大学学报(自然科学版)》 北大核心 2025年第8期158-171,共14页
以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征... 以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征,从图的视角挖掘节点间的复杂属性关系,为SDI提供多维度学习信息.为此,设计了一种融合结构多维特征的图卷积神经网络模型(graph convolutional neural network integrating multi-dimensional features of structure,S-GCN),基于结构振动数据构造损伤特征矩阵,并通过衍生图网络,以图的节点和边表征结构节点的连接关系,构建边索引矩阵,将结构损伤状态、振动数据及节点属性等多维特征信息输入GCN进行结构损伤特征提取及预测识别,探索结构多维特征信息驱动下的GCN在损伤预测中的应用效果.通过两个钢结构验证方法的可行性及有效性,结果表明,S-GCN能够整合结构多维特征信息,对两个结构对象均实现了较高的损伤预测准确性,并展现出良好的噪声鲁棒性.进一步的对比分析显示,相较于三种非GCN模型,S-GCN能够高效地依托节点间关系快速更新节点特征并预测节点损伤状态,其损伤识别准确率、计算效率及网络各层演进过程均优于对比模型,验证了在结构损伤识别中融合结构空间特征的有效性. 展开更多
关键词 结构损伤识别 图卷积神经网络 结构多维特征融合 噪声鲁棒性 训练效率
在线阅读 下载PDF
基于CNN和Efficient Transformer的多尺度遥感图像语义分割算法 被引量:1
6
作者 张振利 胡新凯 +2 位作者 李凡 冯志成 陈智超 《浙江大学学报(工学版)》 北大核心 2025年第4期778-786,共9页
针对现有方法存在遥感图像的多尺度地物特征提取困难和目标边缘分割不准确的问题,提出新的语义分割算法.利用CNN和Efficient Transformer构建双编码器,解耦上下文信息和空间信息.提出特征融合模块加强编码器间的信息交互,有效融合全局... 针对现有方法存在遥感图像的多尺度地物特征提取困难和目标边缘分割不准确的问题,提出新的语义分割算法.利用CNN和Efficient Transformer构建双编码器,解耦上下文信息和空间信息.提出特征融合模块加强编码器间的信息交互,有效融合全局上下文信息和局部细节信息.构建分层Transformer结构提取不同尺度的特征信息,使编码器有效专注不同尺度的物体.提出边缘细化损失函数,缓解遥感图像目标边缘分割不准确的问题.实验结果表明,在ISPRS Vaihingen和ISPRS Potsdam数据集上,所提算法的平均交并比(MIoU)分别为72.45%和82.29%.在SAMRS数据集中的SOTA、SIOR和FAST子集上,所提算法的MIoU分别为88.81%、97.29%和86.65%,总体精度和平均交并比指标均优于对比模型.所提算法在各类不同尺度的目标上有较好的分割性能. 展开更多
关键词 遥感图像 语义分割 双编码器结构 特征融合 Efficient Transformer
在线阅读 下载PDF
用于几何信息学习的图结构运动分割方法 被引量:1
7
作者 张纪友 李俊 +1 位作者 郭霏霏 李琦铭 《电子测量与仪器学报》 北大核心 2025年第2期123-135,共13页
针对现有运动分割方法在交通场景下实用性方面的不足,性能和验证时间难以平衡的问题,提出用于几何信息学习的图结构运动分割方法(GS-Net)。GS-Net由点嵌入模块、局部上下文融合模块、全局双边正则化模块和分类模块组成。其中,点嵌入模... 针对现有运动分割方法在交通场景下实用性方面的不足,性能和验证时间难以平衡的问题,提出用于几何信息学习的图结构运动分割方法(GS-Net)。GS-Net由点嵌入模块、局部上下文融合模块、全局双边正则化模块和分类模块组成。其中,点嵌入模块将原始关键特征点数据从低维线性难可分的空间映射到高维线性易可分的空间,有利于网络学习图像中运动对象之间的关系;局部上下文融合模块利用双分支图结构分别在特征空间和几何空间提取局部信息,随后将两种类型的信息融合得到更强大的局部特征表征;全局双边正则化模块则利用逐点和逐通道的全局感知来增强局部上下文融合模块得到的局部特征表征;分类模块将前面得到的增强局部特征表征映射回低维分类空间进行分割。GS-Net在KT3DMoSeg数据集的误分类率均值和中值分别为2.47%和0.49%,较于SubspaceNet分别降低8.15%和7.95%;较于SUBSET分别降低7.2%和0.57%。同时,GSNet在网络推理速度相比SubspaceNet和SUBSET均提升两个数量级;GS-Net在FBMS数据集召回率和F-measure分别为82.53%和81.93%,较于SubspaceNet分别提升13.33%和5.36%,较于SUBSET分别提升9.66%和3.71%。实验结果表明GSNet能够快速、精确地分割出真实交通场景中的运动物体。 展开更多
关键词 运动分割 关键点提取 图结构 特征融合 深度学习 自动驾驶
在线阅读 下载PDF
面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究
8
作者 李一帆 李聪聪 +1 位作者 李亚南 王斌 《现代电子技术》 北大核心 2025年第6期136-146,共11页
随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-Goo... 随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-GoogLeNet模型。该模型采用了三种不同层级的改进Inception模块,并将这些模块在网络深层和浅层结构中并行连接,在中层结构中引入残差结构,通过特征融合的方式显著提高了网络的计算效率和识别准确率。同时,针对异常行为数据集中动作单一的问题,自建了包含多种异常动作的数据集,并通过将一维动作时序数据二维图形化处理后使得行为动作特征更易于提取。实验结果表明,所提FDS-ABPG-GoogLeNet模型的准确率、灵敏度和特异性分别达到99.40%、99.49%和99.93%。 展开更多
关键词 异常行为识别 Inception模块 残差结构 特征融合 特征提取 卷积神经网络
在线阅读 下载PDF
基于语义增强和特征融合的文本生成图像方法
9
作者 吴昊文 王鹏 +3 位作者 李亮亮 邸若海 李晓艳 吕志刚 《计算机工程与应用》 北大核心 2025年第15期229-240,共12页
文本生成图像是机器学习领域中非常具有挑战性的任务,虽然目前已有很大的突破,但仍然存在图像细粒度不够和语义一致性弱的问题,因此提出了一种基于语义增强和特征融合的文本生成图像方法(SEF-GAN)。针对初始特征表征不足问题,提出了空... 文本生成图像是机器学习领域中非常具有挑战性的任务,虽然目前已有很大的突破,但仍然存在图像细粒度不够和语义一致性弱的问题,因此提出了一种基于语义增强和特征融合的文本生成图像方法(SEF-GAN)。针对初始特征表征不足问题,提出了空间交叉重建模块,对不同信息量特征图进行分离与交叉重建,获得更精细化特征。为了提高文本属性信息的有效利用表征,设计了语义关联注意力模块,提高了文本描述和视觉内容之间的语义一致性。为了充分利用图像区域特征与文本语义标签之间的隐藏联系,构建了通道特征融合模块,将区域图像特征与文本隐层特征进行仿射,对目标区域重构并保留图像中与文本无关内容,并连接反残差结构进一步增强特征表达能力。在CUB和COCO数据集上实验结果表明,相对于现有先进方法,该方法将IS指标分别提高了18.8%和6.3%,FID指标分别提高了33.9%和14.6%,RP指标分别提高了10.9%和3.3%。证实所提方法能有效生成细节更丰富的图像,与文本描述更加吻合。 展开更多
关键词 文本生成图像 生成对抗网络 属性特征学习 图像语义融合 反残差结构
在线阅读 下载PDF
面向复杂刑事案件的涉案金额识别方法
10
作者 田如君 林川 +3 位作者 黄瑞章 陈艳平 杨志 秦永彬 《计算机工程与设计》 北大核心 2025年第6期1556-1563,共8页
针对现有涉案金额识别方法在复杂案件(一案多人)上面临金额的所属关系易混淆及意图多样性问题,提出一种面向复杂刑事案件的涉案金额识别推理方法。通过分析裁判文书的逻辑结构,抽取文书中的金额相关要素并结合文书的特征构建金额共现图... 针对现有涉案金额识别方法在复杂案件(一案多人)上面临金额的所属关系易混淆及意图多样性问题,提出一种面向复杂刑事案件的涉案金额识别推理方法。通过分析裁判文书的逻辑结构,抽取文书中的金额相关要素并结合文书的特征构建金额共现图,用图的形式对金额的归属关系进行表示,使用图神经网络(graph neural network, GNN)在金额共现图中学习要素节点之间的语义依赖信息和结构信息,获取其深层的节点特征,实现对涉案金额的识别和推理。在公共比赛数据集LAIC2021(Legal AI Challenge 2021)上的准确率(Accuracy, Acc)值达到94.75%,比当前最优模型提升了3.7%,在某省人民法院裁判文书复杂案件数据集上的Acc值达到74.16%。 展开更多
关键词 刑事案件 涉案金额识别 裁判文书逻辑结构 金额共现图 图神经网络 司法智能 特征融合
在线阅读 下载PDF
基于双分支注意力机制的指纹纹型分类
11
作者 赵东越 石磊 丁锰 《智能系统学报》 北大核心 2025年第4期936-945,共10页
针对现有指纹分类算法中存在的低质量指纹难以识别、特征信息提取不充分以及提取过程中信息丢失的问题,提出一种基于双分支注意力机制的指纹纹型分类算法。算法通过提取方向场和进行Gabor滤波的双分支网络进行特征融合,充分利用指纹图... 针对现有指纹分类算法中存在的低质量指纹难以识别、特征信息提取不充分以及提取过程中信息丢失的问题,提出一种基于双分支注意力机制的指纹纹型分类算法。算法通过提取方向场和进行Gabor滤波的双分支网络进行特征融合,充分利用指纹图像的纹线特征和全局特征;提出的组合激活函数和综合注意力机制模块充分提取卷积分支上的空间特征和通道特征信息,减少提取过程中的信息丢失;设计分支特征融合模块对双分支输出的特征图进行加权,充分融合特征信息;最后引入改进的交叉熵损失缓解样本分布不平衡的问题。实验结果表明,所提算法在自建纹型数据集的4类指纹分类中取得了99.08%的准确率,在准确率、F1分数和曲线下面积指标方面均优于其他网络模型,验证了本文算法在纹型分类任务上的有效性和优越性。 展开更多
关键词 图像处理 指纹分类 双分支结构 注意力机制 特征融合 超参数 激活函数 深度学习
在线阅读 下载PDF
基于双层路由注意力机制的目标跟踪算法
12
作者 孙逸秋 周冬明 王长城 《计算机工程与设计》 北大核心 2025年第4期959-965,共7页
为解决目前基于Transformer的目标跟踪算法采用单一注意力机制,难以有效区分背景和目标的优先级,以及全局注意力操作导致计算负担过重的问题,提出一种基于双层路由注意力的目标跟踪算法。双层路由注意力特征融合模块将单一注意力分为两... 为解决目前基于Transformer的目标跟踪算法采用单一注意力机制,难以有效区分背景和目标的优先级,以及全局注意力操作导致计算负担过重的问题,提出一种基于双层路由注意力的目标跟踪算法。双层路由注意力特征融合模块将单一注意力分为两个层次,上层对图像的区域特征进行相似度筛选,下层对筛选出的区域进行注意力计算。所提算法在LaSOT、GOT-10K、OTB100多个数据集上进行对比实验,实验结果表明,所提算法跟踪表现优良,性能优于现有的多个跟踪器。 展开更多
关键词 深度学习 特征融合 目标跟踪 模板更新 注意力机制 多尺度结构 单流框架
在线阅读 下载PDF
广域作物种植种类解析技术
13
作者 郭佳希 姚竟发 滕桂法 《中国农机化学报》 北大核心 2025年第9期352-360,共9页
实时精准获取田间土地信息是农业管理部门有效落实种植计划与监管的重要手段与关键环节。为克服基于无人机影像的农田分类中面临的精度不足、边缘模糊以及效率低下等问题,融合无人机图像处理及深度学习技术,改进DeepLabV3+网络模型。首... 实时精准获取田间土地信息是农业管理部门有效落实种植计划与监管的重要手段与关键环节。为克服基于无人机影像的农田分类中面临的精度不足、边缘模糊以及效率低下等问题,融合无人机图像处理及深度学习技术,改进DeepLabV3+网络模型。首先引入轻量级网络MS—MobileNetV2替代原有主干,显著提升识别效率;其次集成ECANet模块,有效抑制背景干扰因素,使模型专注于作物信息的提取;最后调整ASPP的膨胀率,级联不同尺度的信息,增强特征抓取能力。选取蠡县周边农田作为研究区域,利用无人机正射影像构建数据集,进行对比试验。结果表明:所提方法在玉米、山药、荒地、乔木、菜地的分类精度上分别提高0.7%、1.15%、5.04%、2.59%、0.95%,并且减少87.8%的参数量和50.5%的训练用时。 展开更多
关键词 广域作物 无人机 深度分离卷积 编解码结构 特征融合 高效通道注意力
在线阅读 下载PDF
融合汉字结构和边界增强的嵌套命名实体识别方法
14
作者 陈鹏 向道岸 +1 位作者 李旭 陈世洁 《现代电子技术》 北大核心 2025年第14期108-116,共9页
嵌套的命名实体之间蕴含着丰富的语义关系和复杂的结构信息,传统的序列标记方法通常无法准确识别嵌套实体,即那些嵌套在内部的实体。为解决该问题,提出一种融合汉字结构和边界增强的嵌套命名实体识别模型BCBE-NNER。该模型首先通过循环... 嵌套的命名实体之间蕴含着丰富的语义关系和复杂的结构信息,传统的序列标记方法通常无法准确识别嵌套实体,即那些嵌套在内部的实体。为解决该问题,提出一种融合汉字结构和边界增强的嵌套命名实体识别模型BCBE-NNER。该模型首先通过循环神经网络来融合汉字结构等信息,以生成特殊的文本表示信息;其次,使用两个独立的GRU层对生成的文本表示信息进行实体头部和尾部预测,进一步加强实体的边界信息,并采用异构图神经网络进行迭代更新。结果表明:在嵌套CMeEE-V2数据集上,BCBE-NNER模型的F1值由原来的72.11%提高为74.12%,提升了2.01%;在平面Weibo NER数据集上,BCBE-NNER模型的F1值由原来的72.77%提高为75.10%,提升了2.33%。 展开更多
关键词 嵌套命名实体识别 汉字结构 边界增强 异构图神经网络 序列标记 特征融合
在线阅读 下载PDF
基于改进RT-DETR的井下输送带跑偏故障检测算法 被引量:1
15
作者 安龙辉 王满利 张长森 《工矿自动化》 北大核心 2025年第3期54-62,共9页
目前输送带跑偏检测研究主要集中于提取输送带边缘的直线特征,该方式需设定特定阈值,易受环境因素的制约,导致检测速度慢、精度不高。针对该问题,提出了一种基于改进RT-DETR的井下输送带跑偏故障检测算法,使用改进RT-DETR直接对一组托... 目前输送带跑偏检测研究主要集中于提取输送带边缘的直线特征,该方式需设定特定阈值,易受环境因素的制约,导致检测速度慢、精度不高。针对该问题,提出了一种基于改进RT-DETR的井下输送带跑偏故障检测算法,使用改进RT-DETR直接对一组托辊检测,根据左右托辊的暴露程度识别是否跑偏。针对实时检测转换器(RT-DETR)主干网络进行3个方面的改进:①为了减少主干网络的参数量和浮点运算数量(FLOPs),使用FasterNet Block替换ResNet34中的BasicBlock;②为了提升模型的精度和效率,在FasterNet Block结构中,引入结构重参数化的思想;③为了提升FasterNet Block在特征提取方面的性能,引入了高效多尺度注意力机制(EMA),更加有效地捕捉全局和局部特征图。为了拓展感受野并捕获更有效、更广泛的上下文信息,以获得更为丰富的特征表达,采用改进高级筛选特征融合金字塔网络(HS-FPN)来优化多尺度特征融合。实验结果表明,与基准模型相比较,改进RT-DETR模型的参数量和FLOPs分别减少了8.4×10^(6)个和17.8 G,mAP@0.5达94.5%,严重跑偏检测精度达99.2%,检测速度达41.0帧/s,优于TOOD,ATSS等目标检测模型,满足煤矿生产对目标检测实时性和准确性的需求。 展开更多
关键词 输送带跑偏 目标检测 实时检测转换器 结构重参数化 高效多尺度注意力机制 多尺度特征融合
在线阅读 下载PDF
基于多通道融合机制的非侵入式负荷监测方法
16
作者 何耿生 黄宇 +4 位作者 曾金灿 尚楠 刘玺 梁梓杨 蒲曾鑫 《计算机应用》 北大核心 2025年第S1期317-322,共6页
基于神经网络的非侵入式负荷监测(NILM)方法在负荷辨识方面效果优越,但现有NILM研究过度依赖复杂的神经网络算法,或侧重于使用特征工程提取高级特征,缺乏对神经网络架构进行改进以增强特征表征能力的研究,这些限制了算法的实用性和泛化... 基于神经网络的非侵入式负荷监测(NILM)方法在负荷辨识方面效果优越,但现有NILM研究过度依赖复杂的神经网络算法,或侧重于使用特征工程提取高级特征,缺乏对神经网络架构进行改进以增强特征表征能力的研究,这些限制了算法的实用性和泛化能力。为了解决上述问题,提出一种基于多通道融合机制的NILM方法(MCF)。该方法使用多种具有特征重要性度量功能的机器学习算法进行特征重要性排序,并基于特征分布规律将特征分为3类;接着,将传统的基于单通道的神经网络架构升级为多分支结构。这种设计一方面强调重要特征,另一方面擅长捕捉特征间的交互作用,从而有效地提高负荷辨识的准确率。实验结果表明,MCF的平均负荷识别准确率达到85.72%,远高于现有的单通道模型,而在空调和电饭煲等常规模型难以识别的电器类型上,MCF的识别准确率的提升尤为显著,达20.64个百分点以上。 展开更多
关键词 负荷监测 多通道融合机制 多分支结构 特征重要性 特征表征能力
在线阅读 下载PDF
多样性特征增强与低秩表示的多视图聚类算法
17
作者 陈梦瑶 陈秀宏 《小型微型计算机系统》 北大核心 2025年第6期1391-1399,共9页
基于低秩表示的多视图聚类方法能够提取数据的全局结构且具有对噪声强鲁棒的优点.然而,低秩表示往往忽略了不同视图的多样性特征信息,这可能会影响多视图聚类算法的性能.针对上述问题,提出一种多样性特征增强与低秩表示的多视图聚类算法... 基于低秩表示的多视图聚类方法能够提取数据的全局结构且具有对噪声强鲁棒的优点.然而,低秩表示往往忽略了不同视图的多样性特征信息,这可能会影响多视图聚类算法的性能.针对上述问题,提出一种多样性特征增强与低秩表示的多视图聚类算法(Multi-view clustering algorithm with diversity feature enhancement and low-rank representation,MVC-DL).首先,MVC-DL通过表征出各视图的多样性特征信息,将其与一致性特征矩阵联合使得学习到的多视图特征信息更准确;其次,提出一种多视图加权谱结构融合策略来构建多视图一致性相似矩阵,有效减少了各个视图间的数据差异及噪声的影响;最后,利用增强拉格朗日乘子法并结合交替迭代优化算法求解该模型.在6个广泛使用的多视图数据集上将MVC-DL与10个先进多视图聚类算法进行对比,验证了MVC-DL的有效性. 展开更多
关键词 多视图聚类 低秩表示 特征提取 谱结构融合
在线阅读 下载PDF
面向多模态心脏影像的多分支协同分割模型
18
作者 肖瑞 邵伟 《数据采集与处理》 北大核心 2025年第4期887-900,共14页
精确的心脏结构分割对于心脏血管疾病辅助诊断和术前的准确评估有着重要的意义。不同模态的影像之间在空间分布和语义表达上存在显著差异,但现有方法多采用单分支网络结构,难以充分融合多模态信息,在多模态任务上缺乏泛化能力。针对这... 精确的心脏结构分割对于心脏血管疾病辅助诊断和术前的准确评估有着重要的意义。不同模态的影像之间在空间分布和语义表达上存在显著差异,但现有方法多采用单分支网络结构,难以充分融合多模态信息,在多模态任务上缺乏泛化能力。针对这一问题,提出一种融合状态空间模型Mamba与卷积模型的多分支协同分割网络MCNet(Multi-modal collaborative network)。该网络主要由3个模块构成:基于Mamba与卷积神经网络的双分支特征提取器、动态特征融合模块以及Mamba解码器。特征提取器的双分支分别侧重于提取全局语义与局部细节特征,动态特征融合模块根据图像动态调整多种融合路径的权重,从而实现不同分支的动态特征整合。本文提出的方法在心脏的MRI数据集ACDC与超声数据集CAMUS上进行了充分实验。实验结果表明,本文方法通过基于混合专家(Mixture of experts,MoE)机制的动态特征融合模块,动态调整Mamba全局特征和CNN局部特征的融合权重,在边界清晰的ACDC数据集中,平均Dice和交并比IoU分别达到0.845和0.779,在边界模糊的CAMUS数据集中的平均Dice和IoU分别达到0.883和0.796,均优于目前主流方法。同时,消融实验进一步验证了每个模块的有效性。MCNet通过MoE机制实时调整全局和局部特征的融合权重,在保证全局感知的同时提升了结构细节完整性,为多模态心脏影像分割提供了高效而鲁棒的解决方案。 展开更多
关键词 医学影像分割 多模态医疗影像 心脏结构分割 Mamba 动态特征融合 多分支协同分割
在线阅读 下载PDF
基于多分支结构的手写字图像特征提取自适应算法
19
作者 郭晓静 赵小源 邹松林 《工程科学与技术》 北大核心 2025年第3期247-255,共9页
飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用... 飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用情形,导致字符特征提取困难且识别精度不高。为了针对性地提升平均识别准确率和速度,减少结构相似字、结构复杂字等的错误识别,本文提出一种多分支卷积与特征融合提取结构。利用深层卷积的多尺度特征提取优势,引入改进的重参数化多分支结构来改善图像全局、局部特征提取效果;采用全卷积实现区域空间特征与图像深层特征融合,在分类过程中,提出融合全卷积分类器结构,依据字符特征复杂程度不同自适应分类,改善相似字与复杂字类间、类内的分类识别效果。与主流的手写字识别方法相比,改进后网络结构的存储大小为69.1 MB;在汉字数据集上的实验表明,识别精度与速度均大幅提升,模型首次预测准确率和前5次预测准确率分别达到97.50%和99.79%。模型对相似字符、中英文字符的识别模型优势明显,在包含了中英文和数字的数据集上,改进后结构存储大小为69.2 MB,实验结果中首次预测准确率达到97.23%,推理速度达到1 400张/s,对飞机地面维护工卡识别等特定领域有一定价值。 展开更多
关键词 脱机手写汉字识别 全卷积 重参数化结构 空间特征融合 重参数化多分支卷积算法
在线阅读 下载PDF
基于改进Faster R-CNN的变电站设备外部缺陷检测 被引量:7
20
作者 张铭泉 邢福德 刘冬 《智能系统学报》 CSCD 北大核心 2024年第2期290-298,共9页
针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-C... 针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-CNN(faster region-based convolutional network)算法,但其对小目标物体和设备渗漏油的检测精度仍有提升空间,为此设计一种基于Faster R-CNN的改进算法。改进算法通过对输入图像进行数据增强,在网络中添加SPP(spatial pyramid pooling)结构以及改进特征融合方式,对分类以及边界框回归损失函数进行改进的方式来提高缺陷的检测精度。与原Faster R-CNN算法进行对比,改进算法在变电站设备缺陷目标检测数据集的检测结果中AP(average precision)(0.5∶0.95)提高了2.7个百分点,AP(0.5)提高了4.3个百分点,对小目标物体的检测精度也提高了1.8个百分点,试验结果验证了该方法的有效性。 展开更多
关键词 变电站设备外部缺陷 深度学习 目标检测 卷积神经网络 Faster R-CNN 特征提取 特征融合金字塔结构 损失函数
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部