期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
1
作者 Hai-Tao Jia Bo-Yang Zhang +4 位作者 Chao Huang Wen-Han Li Wen-Bo Xu Yu-Feng Bi Li Ren 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期44-54,共11页
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ... At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively. 展开更多
关键词 feature information enhancement Graph neural network Natural language processing Sparse knowledge graph(KG)inference
在线阅读 下载PDF
Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure,Laser Spectrum Bandwidth and Central Frequency
2
作者 程文静 梁果 +3 位作者 吴萍 贾天卿 孙真荣 张诗按 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期41-45,共5页
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control... The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications. 展开更多
关键词 TL Coherent features of Resonance-Mediated Two-Photon Absorption enhancement by Varying the Energy Level Structure Laser Spectrum Bandwidth and Central Frequency
在线阅读 下载PDF
HIET:Hybrid Information Enhancement Transformer Network for Single-Photon Image Reconstruction
3
作者 Yiming Liu Xuri Yao +2 位作者 Tao Zhang Yifei Sun Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期1-17,共17页
Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face sev... Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information. 展开更多
关键词 single-photon images hybrid information enhancement structual feature enhancement data simulation pipeline
在线阅读 下载PDF
Underwater Sea Cucumber Target Detection Based on Edge-Enhanced Scaling YOLOv4
4
作者 Ziting Zhang Hang Zhang +3 位作者 Yue Wang Tonghai Liu Yuxiang He Yunchen Tian 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期328-340,共13页
Sea cucumber detection is widely recognized as the key to automatic culture.The underwater light environment is complex and easily obscured by mud,sand,reefs,and other underwater organisms.To date,research on sea cucu... Sea cucumber detection is widely recognized as the key to automatic culture.The underwater light environment is complex and easily obscured by mud,sand,reefs,and other underwater organisms.To date,research on sea cucumber detection has mostly concentrated on the distinction between prospective objects and the background.However,the key to proper distinction is the effective extraction of sea cucumber feature information.In this study,the edge-enhanced scaling You Only Look Once-v4(YOLOv4)(ESYv4)was proposed for sea cucumber detection.By emphasizing the target features in a way that reduced the impact of different hues and brightness values underwater on the misjudgment of sea cucumbers,a bidirectional cascade network(BDCN)was used to extract the overall edge greyscale image in the image and add up the original RGB image as the detected input.Meanwhile,the YOLOv4 model for backbone detection is scaled,and the number of parameters is reduced to 48%of the original number of parameters.Validation results of 783images indicated that the detection precision of positive sea cucumber samples reached 0.941.This improvement reflects that the algorithm is more effective to improve the edge feature information of the target.It thus contributes to the automatic multi-objective detection of underwater sea cucumbers. 展开更多
关键词 sea cucumber edge extraction feature enhancement edge-enhanced scaling You Only Look Once-v4(YOLOv4)(ESYv4) model scaling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部