期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于二次组合的特征工程与XGBoost模型的用户行为预测 被引量:21
1
作者 杨立洪 白肇强 《科学技术与工程》 北大核心 2018年第14期186-189,共4页
特征构造的难题在数据挖掘过程中一直存在,传统固化的特征工程对于业务场景千变万化的数据挖掘任务所带来的效益十分有限,因此解决特征工程的特征构造问题已经成为数据挖掘的瓶颈之一;尤其在机器学习算法快速发展的情况下,特征逐渐成为... 特征构造的难题在数据挖掘过程中一直存在,传统固化的特征工程对于业务场景千变万化的数据挖掘任务所带来的效益十分有限,因此解决特征工程的特征构造问题已经成为数据挖掘的瓶颈之一;尤其在机器学习算法快速发展的情况下,特征逐渐成为模型中急需重视的部分。基于电商平台的用户行为数据,在原有特征群的基础上提出了二次组合统计特征的构建方法。利用二次交叉衍生出丰富而又切合业务场景的特征群,同时结合两种滑动窗口的方法,分别是定长滑动窗口获取更多的训练样本,变长滑动窗口获取具有时间权重的训练特征,以此来最大限度地还原出用户真实的行为习惯。最后,使用不同的特征组合结合降维的方法建立对照检验模型;并利用线性的逻辑回归模型、线性支持向量机以及树模型极端随机森林与XGBoost对模型进行交叉验证。结果表明,组合特征在树模型的算法中得到了非常好的表达效果;而且无论在线性模型还是树模型中衍生特征群模型的F1值都优于基础特征群。 展开更多
关键词 特征工程 二次组合特征 用户行为预测 xgboost
在线阅读 下载PDF
基于深度森林的用户购买行为预测模型 被引量:23
2
作者 葛绍林 叶剑 何明祥 《计算机科学》 CSCD 北大核心 2019年第9期190-194,共5页
近年来,网络零售保持高速增长,网站中富含大量的用户行为数据。电商平台中的用户对商品的操作行为可以体现用户偏好,如何利用用户行为挖掘用户偏好已经成为学术界和工业界的关注焦点,并已经取得了众多研究成果。然而,目前用户操作行为... 近年来,网络零售保持高速增长,网站中富含大量的用户行为数据。电商平台中的用户对商品的操作行为可以体现用户偏好,如何利用用户行为挖掘用户偏好已经成为学术界和工业界的关注焦点,并已经取得了众多研究成果。然而,目前用户操作行为预测方法研究通常只针对用户某一类操作行为进行分析,无法完备反映用户行为的整体特征。因此,提出一种基于深度森林的用户购买行为预测模型,通过构建用户行为特征工程建立整体用户行为特征模型;基于此,提出基于深度森林的用户购买行为预测方法,实现高效的行为预测训练效果。该方法的训练时间为43s,F1值为9.73%,相对其他模型取得了更好的效果。实验结果表明,该模型在降低时间开销的同时,提高了预测准确率。 展开更多
关键词 用户行为特征 深度森林 特征工程 购买行为预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部