针对自动驾驶决策计算低功耗、低延时、高精度的需求,文章设计一种支持混合精度运算的深度强化学习自动驾驶决策算法的硬件加速器。通过多运算单元重构方式设计乘累加单元(multiply-and-accumulate unit, MAC),支持多种精度模式的计算,...针对自动驾驶决策计算低功耗、低延时、高精度的需求,文章设计一种支持混合精度运算的深度强化学习自动驾驶决策算法的硬件加速器。通过多运算单元重构方式设计乘累加单元(multiply-and-accumulate unit, MAC),支持多种精度模式的计算,提高加速器的灵活性,降低量化模型的部署成本;通过多层次优化数据流,提高复用程度,优化加速器能耗比。在随机潜在演员评论家(stochastic latent actor-critic, SLAC)自动驾驶决策算法上测试该硬件加速器,结果表明:有效算力达到18.3 GOPS,是CPU的10.7倍,GPU的3.3倍;能效比达到2.197 GOPS/W,是CPU的104倍,GPU的28倍。同时提出一种高位数据编码(most significant bit data coding, MSB-DC)方法实现层内混合精度特征图计算,实验结果表明,该方法能以较少的延迟成本有效降低量化所带来的误差。展开更多
在传统拓扑优化设计中,随着结构单元增加,迭代计算过程消耗了大量的时间。本文提出了一种基于深度学习的方法来加速拓扑优化设计过程,缩短了结构拓扑优化设计的迭代过程,并生成了高分辨率拓扑优化结构。利用深度学习方法,在低分辨率中...在传统拓扑优化设计中,随着结构单元增加,迭代计算过程消耗了大量的时间。本文提出了一种基于深度学习的方法来加速拓扑优化设计过程,缩短了结构拓扑优化设计的迭代过程,并生成了高分辨率拓扑优化结构。利用深度学习方法,在低分辨率中间构型与高分辨率拓扑构型之间创建高维映射关系,利用独立、连续和映射(ICM)方法建立深度学习网络所需要的数据集,训练神经网络以实现加速过程,将结构拓扑优化设计问题转化为图像处理中的风格迁移问题。通过引入条件生成对抗式神经网络CGAN(Conditional Generative and Adversarial Network)解决了跨分辨率拓扑优化问题,实验验证了优化过程效率的提高,该方法具有良好的泛化性能,研究模型在其他结构优化设计中具有可推广性。展开更多
文摘针对自动驾驶决策计算低功耗、低延时、高精度的需求,文章设计一种支持混合精度运算的深度强化学习自动驾驶决策算法的硬件加速器。通过多运算单元重构方式设计乘累加单元(multiply-and-accumulate unit, MAC),支持多种精度模式的计算,提高加速器的灵活性,降低量化模型的部署成本;通过多层次优化数据流,提高复用程度,优化加速器能耗比。在随机潜在演员评论家(stochastic latent actor-critic, SLAC)自动驾驶决策算法上测试该硬件加速器,结果表明:有效算力达到18.3 GOPS,是CPU的10.7倍,GPU的3.3倍;能效比达到2.197 GOPS/W,是CPU的104倍,GPU的28倍。同时提出一种高位数据编码(most significant bit data coding, MSB-DC)方法实现层内混合精度特征图计算,实验结果表明,该方法能以较少的延迟成本有效降低量化所带来的误差。
文摘在传统拓扑优化设计中,随着结构单元增加,迭代计算过程消耗了大量的时间。本文提出了一种基于深度学习的方法来加速拓扑优化设计过程,缩短了结构拓扑优化设计的迭代过程,并生成了高分辨率拓扑优化结构。利用深度学习方法,在低分辨率中间构型与高分辨率拓扑构型之间创建高维映射关系,利用独立、连续和映射(ICM)方法建立深度学习网络所需要的数据集,训练神经网络以实现加速过程,将结构拓扑优化设计问题转化为图像处理中的风格迁移问题。通过引入条件生成对抗式神经网络CGAN(Conditional Generative and Adversarial Network)解决了跨分辨率拓扑优化问题,实验验证了优化过程效率的提高,该方法具有良好的泛化性能,研究模型在其他结构优化设计中具有可推广性。