In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating c...In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.展开更多
This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co...Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.展开更多
We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-o...We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-order and second-order multi-agent systems is discussed. Furthermore, based on graph theory and stability theory, some sufficient conditions for the stability of SLCC on multi-agent systems are obtained. Finally, several numerical examples are given to verify the correctness of our theoretical results.展开更多
A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fau...A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fault,a detection observer is designed for the longitudinal dynamics,and a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics.Then,an anti-windup compensator is augmented into the fault-tolerant control law to eliminate the effect of input saturation.Using linear matrix inequality(LMI)technology,the detection observer based fault-tolerant controller is designed to ensure the stability of the closed-loop system and the convergence of the detection observer.Finally,the developed robust fault-tolerant control scheme is applied to the longitudinal model of an aircraft and simulation results are presented to illustrate the effectiveness of the proposed control scheme.展开更多
We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers ar...We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode(LSM) as well as nonsingular terminal sliding mode(NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results.展开更多
The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau...The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.展开更多
In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The non...In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.展开更多
This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of ext...This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.展开更多
The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed...The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.展开更多
A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communicat...A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.展开更多
This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which...This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.展开更多
The paper addresses the issue of H_∞ couple-group consensus for a class of discrete-time stochastic multi-agent systems via output-feedback control. Both fixed and Markovian switching communication topologies are con...The paper addresses the issue of H_∞ couple-group consensus for a class of discrete-time stochastic multi-agent systems via output-feedback control. Both fixed and Markovian switching communication topologies are considered. By employing linear transformations, the closed-loop systems are converted into reduced-order systems and the H_∞ couplegroup consensus issue under consideration is changed into a stochastic H_∞ control problem. New conditions for the mean-square asymptotic stability and H_∞ performance of the reduced-order systems are proposed. On the basis of these conditions, constructive approaches for the design of the output-feedback control protocols are developed for the fixed communication topology and the Markovian switching communication topologies, respectively. Finally, two numerical examples are given to illustrate the applicability of the present design approaches.展开更多
In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-age...In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.展开更多
In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated.The interaction topology among the agents is depicted by a directed graph. The full-order and reduce...In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated.The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example.展开更多
This paper investigates asymptotic bounded consensus tracking(ABCT) of double-integrator multi-agent systems(MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target(AUABJT) available to parti...This paper investigates asymptotic bounded consensus tracking(ABCT) of double-integrator multi-agent systems(MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target(AUABJT) available to partial agents based on sampled-data without velocity measurements. A sampled-data consensus tracking protocol(CTP) without velocity measurements is proposed to guarantee that double-integrator MASs track an AUABJT available to only partial agents.The eigenvalue analysis method together with the augmented matrix method is used to obtain the necessary and sufficient conditions for ABCT. A numerical example is provided to illustrate the effectiveness of theoretical results.展开更多
A fault-tolerant control law based on adaptive super-twisting sliding mode control(SMC)is designed for the attitude command tracking problem of a launch vehicle with actuator faults,considering the uncertainties arisi...A fault-tolerant control law based on adaptive super-twisting sliding mode control(SMC)is designed for the attitude command tracking problem of a launch vehicle with actuator faults,considering the uncertainties arising from unknown external disturbances,fuel consumption of the launch vehicle,and the perturbation due to the change in rotational inertia caused by tank sloshing,as well as the potential system model changes due to actuator fault and unmodeled dynamics.This control algorithm integrates the super-twisting SMC,the fuzzy logic control,and the adaptive control.First,a super-twisting sliding surface is selected to mitigate the“chattering”phenomenon inherent in SMC,ensuring that the system tracking error converges to zero within a finite time.Second,building upon this sliding surface,the fuzzy logic control is used to approximate the unknown system function,which includes fault information.Adaptive parameters are used to approach the system parameters and enhance disturbance rejection.The stability and finite-time convergence of the launch vehicle attitude tracking control system are verified by the Lyapunov method.Numerical simulations demonstrate the effectiveness and robustness of the proposed adaptive super-twisting SMC algorithm.展开更多
基金Supported by the Heilongjiang Postdoctoral Foundation under Grant No. LH-04010
文摘In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金supported by the National Natural Science Foundation of China(11372073,11072061)
文摘Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61663006 and 11661026)the Guangxi Natural Science Foundation Program,China(Grant No.2015GXNSFBB139002)+1 种基金the Guangxi Key Laboratory of Cryptography and Information Security,China(Grant No.GCIS201612)the Innovation of GUET Graduate Education,China(Grant No.2018YJCX57)
文摘We introduce a new consensus pattern, named a successive lag cluster consensus(SLCC), which is a generalized pattern of successive lag consensus(SLC). By applying delay-dependent impulsive control, the SLCC of first-order and second-order multi-agent systems is discussed. Furthermore, based on graph theory and stability theory, some sufficient conditions for the stability of SLCC on multi-agent systems are obtained. Finally, several numerical examples are given to verify the correctness of our theoretical results.
基金supported by the National Natural Science Foundations of China(No.61573184,61374212)the Natural Science Foundation of Jiangsu Province,China (No.SBK20130033)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133218110013)the Six Talents Peak Project of Jiangsu Province of China(No.2012CXXRJ-010)
文摘A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fault,a detection observer is designed for the longitudinal dynamics,and a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics.Then,an anti-windup compensator is augmented into the fault-tolerant control law to eliminate the effect of input saturation.Using linear matrix inequality(LMI)technology,the detection observer based fault-tolerant controller is designed to ensure the stability of the closed-loop system and the convergence of the detection observer.Finally,the developed robust fault-tolerant control scheme is applied to the longitudinal model of an aircraft and simulation results are presented to illustrate the effectiveness of the proposed control scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203142)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2014202206 and F2017202009)
文摘We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode(LSM) as well as nonsingular terminal sliding mode(NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62203246, 62003127, and 62003183)。
文摘The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.
基金supported by Ministry of Science and Technology of Peoples Republic of China(No.2019YFE0104800).
文摘In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective.
基金supported by the National High Technology Research and Development Program of China (Grant Nos. 2007AA041104,2007AA041105 and 2007AA04Z163)
文摘This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.
基金Project supported by the Graduate Student Research Innovation Project of Chongqing(Grant No.CYS22482)the National Natural Science Foundation of China(Grant No.61773082)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202000601)the Research Program of Chongqing Talent,China(Grant No.cstc2021ycjhbgzxm0044).
文摘The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51679057,51309067,and 51609048)the Outstanding Youth Science Foundation of Heilongjiang Providence of China(Grant No.JC2016007)the Natural Science Foundation of Heilongjiang Province,China(Grant No.E2016020)
文摘A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,and 61403168)
文摘This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61503002 and 61573008)
文摘The paper addresses the issue of H_∞ couple-group consensus for a class of discrete-time stochastic multi-agent systems via output-feedback control. Both fixed and Markovian switching communication topologies are considered. By employing linear transformations, the closed-loop systems are converted into reduced-order systems and the H_∞ couplegroup consensus issue under consideration is changed into a stochastic H_∞ control problem. New conditions for the mean-square asymptotic stability and H_∞ performance of the reduced-order systems are proposed. On the basis of these conditions, constructive approaches for the design of the output-feedback control protocols are developed for the fixed communication topology and the Markovian switching communication topologies, respectively. Finally, two numerical examples are given to illustrate the applicability of the present design approaches.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)the Natural Science Foundation of Chongqing Science and Technology Commission, China (Grant Nos. 2009BA2024, cstc2011jjA40045, and cstc2013jcyjA0906)the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, China (Grant No. 2007DA10512711206)
文摘In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LY13F030005)the National Natural Science Foundation of China(Grant No.61501331)
文摘In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated.The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example.
基金supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,61473138,and 61403168)the Fundamental Research Funds for the Central Universities of China(Grant No.JUSRP51510)
文摘This paper investigates asymptotic bounded consensus tracking(ABCT) of double-integrator multi-agent systems(MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target(AUABJT) available to partial agents based on sampled-data without velocity measurements. A sampled-data consensus tracking protocol(CTP) without velocity measurements is proposed to guarantee that double-integrator MASs track an AUABJT available to only partial agents.The eigenvalue analysis method together with the augmented matrix method is used to obtain the necessary and sufficient conditions for ABCT. A numerical example is provided to illustrate the effectiveness of theoretical results.
基金supported in part by the National Key R&D Program of China(No.2023YFB3307100)the National Natural Science Foundation of China(Nos.62227814,62203461,62203365)Shaanxi Provincial Science and Technology Innovation Team(No.2022TD-24)。
文摘A fault-tolerant control law based on adaptive super-twisting sliding mode control(SMC)is designed for the attitude command tracking problem of a launch vehicle with actuator faults,considering the uncertainties arising from unknown external disturbances,fuel consumption of the launch vehicle,and the perturbation due to the change in rotational inertia caused by tank sloshing,as well as the potential system model changes due to actuator fault and unmodeled dynamics.This control algorithm integrates the super-twisting SMC,the fuzzy logic control,and the adaptive control.First,a super-twisting sliding surface is selected to mitigate the“chattering”phenomenon inherent in SMC,ensuring that the system tracking error converges to zero within a finite time.Second,building upon this sliding surface,the fuzzy logic control is used to approximate the unknown system function,which includes fault information.Adaptive parameters are used to approach the system parameters and enhance disturbance rejection.The stability and finite-time convergence of the launch vehicle attitude tracking control system are verified by the Lyapunov method.Numerical simulations demonstrate the effectiveness and robustness of the proposed adaptive super-twisting SMC algorithm.