期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes 被引量:1
1
作者 Shutian Cao Fengshou Zhang +4 位作者 Mengke An Derek Elsworth Manchao He Hai Liu Luanxiao Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1273-1282,共10页
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear... Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults. 展开更多
关键词 fault stability Basaltic fault Temperature elevation Obsidian content Shallow moonquakes
在线阅读 下载PDF
Analysis of microseismic activity in rock mass controlled by fault in deep metal mine 被引量:2
2
作者 Liu Jianpo Liu Zhaosheng +2 位作者 Wang Shaoquan Shi Changyan Li Yuanhui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期235-239,共5页
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac... Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass. 展开更多
关键词 Deep mining fault Microseism(MS) stability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部