An active fault tolerant control scheme is investigated for the attitude control systems of spacecraft with external disturbance and actuator faults by using the sliding mode technique. Firstly,the dynamic equations a...An active fault tolerant control scheme is investigated for the attitude control systems of spacecraft with external disturbance and actuator faults by using the sliding mode technique. Firstly,the dynamic equations and kinematic equations of spacecraft are given. For the dynamic mode of spacecraft in faulty case,a fault diagnosis component is used for fault detection and estimation by using a nonlinear observer. According to the fault estimation information obtained during the fault diagnosis,the fault tolerant control scheme is developed by adopting the backstepping sliding mode control technique. Meanwhile,the Lyapunov theory is used to analyze the stability of the closed-loop attitude systems. Finally,simulation results for the attitude dynamics models show the feasibility of the proposed fault tolerant scheme.展开更多
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co...Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.展开更多
A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault inf...A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault influence of the faulty one on the whole collaborative system. When the faulty subsystem could not repair itself or the repair process needs a long time, the controller of the fault-free subsystem is reconfigured using the fault diagnosis information and other measured infor- mation, leading to the fault tolerant control of the robot collaborative system. Simulations of fault tolerant control for the robot collaborative system show the effectiveness of the proposed method.展开更多
The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depr...The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.展开更多
Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the d...Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliabil- ity and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
The command tracking problem of formation flight control system(FFCS)for multiple unmanned aerial vehicles(UAVs)with sensor faults is discussed.And the objective of the addressed control problem is to design a robust ...The command tracking problem of formation flight control system(FFCS)for multiple unmanned aerial vehicles(UAVs)with sensor faults is discussed.And the objective of the addressed control problem is to design a robust fault tolerant tracking controller such that,for the disturbances and sensor faults,the closed-loop system is asymptotically stable with a given disturbance attenuation level.A robust fault tolerant tracking control scheme,combining an observer with H∞ performance,is proposed.Furthermore,it is proved that the designed controller can guarantee asymptotic stability of FFCS despite sensor faults.Finally,a simulation of two UAV formations is employed to demonstrate the effectiveness of the proposed approach.展开更多
A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fau...A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fault,a detection observer is designed for the longitudinal dynamics,and a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics.Then,an anti-windup compensator is augmented into the fault-tolerant control law to eliminate the effect of input saturation.Using linear matrix inequality(LMI)technology,the detection observer based fault-tolerant controller is designed to ensure the stability of the closed-loop system and the convergence of the detection observer.Finally,the developed robust fault-tolerant control scheme is applied to the longitudinal model of an aircraft and simulation results are presented to illustrate the effectiveness of the proposed control scheme.展开更多
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn...The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.展开更多
The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way...The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.展开更多
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and ti...Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and time-varying, the LPV technique is used for FCS. And then the adaptive fault estimation algorithm based on the LPV adaptive observer is proposed to estimate the fault. To minimize the effect of disturbances on the fault estimation, the H~ robust performance index is introduced to design the LPV adaptive fault diagnosis observer and the fault estimation algorithm. The result shows that the method has good estimation performance and is robust to external disturbances. The design method is presented in terms of linear matrix inequalities (LMIs). Finally, a helicopter LPV FCS model with the actuator fault is used to illustrate the effectiveness of the proposed method.展开更多
基金partially supported by the National Natural Science Foundation of China(No. 61473143)Postgraduate Research & Practice Innovation Program of Jiangsu Province(No. KYCX18_0299)the China Scholarships Council(No. 201806830102)
文摘An active fault tolerant control scheme is investigated for the attitude control systems of spacecraft with external disturbance and actuator faults by using the sliding mode technique. Firstly,the dynamic equations and kinematic equations of spacecraft are given. For the dynamic mode of spacecraft in faulty case,a fault diagnosis component is used for fault detection and estimation by using a nonlinear observer. According to the fault estimation information obtained during the fault diagnosis,the fault tolerant control scheme is developed by adopting the backstepping sliding mode control technique. Meanwhile,the Lyapunov theory is used to analyze the stability of the closed-loop attitude systems. Finally,simulation results for the attitude dynamics models show the feasibility of the proposed fault tolerant scheme.
基金supported by the National Natural Science Foundation of China(11372073,11072061)
文摘Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.
基金Supported by the National Natural Science Foundation of China (61104022, 10971202)the Science and Technology Research Key Program of Henan Educational Committee(12A120009)
文摘A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault influence of the faulty one on the whole collaborative system. When the faulty subsystem could not repair itself or the repair process needs a long time, the controller of the fault-free subsystem is reconfigured using the fault diagnosis information and other measured infor- mation, leading to the fault tolerant control of the robot collaborative system. Simulations of fault tolerant control for the robot collaborative system show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(41602129,41602164)China National Science and Technology Major Project(2016ZX05007003,2016ZX05006-005)
文摘The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.
文摘Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliabil- ity and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
基金supported in part by the Post Doctoral Research Foundation of Jiangsu Province(No.1701140B)the National Natural Science Foundation of China (No. 61403195)the GF Research and Development Project of the Nanjing Tech Universities(No.201709)
文摘The command tracking problem of formation flight control system(FFCS)for multiple unmanned aerial vehicles(UAVs)with sensor faults is discussed.And the objective of the addressed control problem is to design a robust fault tolerant tracking controller such that,for the disturbances and sensor faults,the closed-loop system is asymptotically stable with a given disturbance attenuation level.A robust fault tolerant tracking control scheme,combining an observer with H∞ performance,is proposed.Furthermore,it is proved that the designed controller can guarantee asymptotic stability of FFCS despite sensor faults.Finally,a simulation of two UAV formations is employed to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundations of China(No.61573184,61374212)the Natural Science Foundation of Jiangsu Province,China (No.SBK20130033)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133218110013)the Six Talents Peak Project of Jiangsu Province of China(No.2012CXXRJ-010)
文摘A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fault,a detection observer is designed for the longitudinal dynamics,and a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics.Then,an anti-windup compensator is augmented into the fault-tolerant control law to eliminate the effect of input saturation.Using linear matrix inequality(LMI)technology,the detection observer based fault-tolerant controller is designed to ensure the stability of the closed-loop system and the convergence of the detection observer.Finally,the developed robust fault-tolerant control scheme is applied to the longitudinal model of an aircraft and simulation results are presented to illustrate the effectiveness of the proposed control scheme.
基金Supported by the PetroChina and Southwest Petroleum University Cooperation Project(2020CX010101)the National Natural ScienceFoundation of China(91955204).
文摘The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.
基金supported by the National Key Research and Development Program of China (No.2022YFC2806102)the National Natural Science Foundation of China (No.52171287,52325107)+3 种基金High-tech Ship Research Project of Ministry of Industry and Information Technology (No.2023GXB01-05-004-03,No.GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province (No.ZR2022JQ25)the Taishan Scholars Project (No.tsqn201909063)the Fundamental Research Funds for the Central Universities (No.24CX10006A)。
文摘The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
基金Supported by the National Natural Science Foundation of China(60811120024)Aeronautical Scienceand Technology Innovation Foundation of China(08C52001)~~
文摘Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and time-varying, the LPV technique is used for FCS. And then the adaptive fault estimation algorithm based on the LPV adaptive observer is proposed to estimate the fault. To minimize the effect of disturbances on the fault estimation, the H~ robust performance index is introduced to design the LPV adaptive fault diagnosis observer and the fault estimation algorithm. The result shows that the method has good estimation performance and is robust to external disturbances. The design method is presented in terms of linear matrix inequalities (LMIs). Finally, a helicopter LPV FCS model with the actuator fault is used to illustrate the effectiveness of the proposed method.