期刊文献+
共找到1,932篇文章
< 1 2 97 >
每页显示 20 50 100
Fault diagnosis method of link control system for gravitational wave detection 被引量:1
1
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
在线阅读 下载PDF
Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map 被引量:2
2
作者 宋羽 姜庆超 颜学峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期601-609,共9页
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a cla... A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults. 展开更多
关键词 statistic pattern framework self-organizing map fault diagnosis process monitoring
在线阅读 下载PDF
Condition Monitoring and Fault Diagnosis Based on Rough Set Theory 被引量:1
3
作者 Li Xiong Li Shengli Xu Zongchang 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期781-783,共3页
In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm bas... In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm based on rough set theory is adopted to extract condition information in monitoring and diagnosis for an engine,so that the technology condition monitoring parameters are optimized. The decision tables for each fault source are built and the diagnosis rules rooting in rough set reduction is applied to carry through intelligent fault diagnosis. The cases studied show that rough set method in condition monitoring and fault diagnosis can lighten the work burden in feature selection and afford advantages for autonomic learning and decision during diagnosis. 展开更多
关键词 CONDITION monitoring fault diagnosis ROUGH SET theory ENGINE
在线阅读 下载PDF
Static-deformation based fault diagnosis for damping spring of large vibrating screen 被引量:7
4
作者 彭利平 刘初升 +1 位作者 李珺 王宏 《Journal of Central South University》 SCIE EI CAS 2014年第4期1313-1321,共9页
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st... Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS. 展开更多
关键词 static deformation suspended mass method large vibrating screen damping spring fault diagnosis
在线阅读 下载PDF
STUDY ON REALISTIC TECHNOLOGY OF CONDITION MONITORING AND FAULT DIAGNOSTIC SYSTEM FOR SHIPPING POWER DEVICES
5
作者 温熙森 李岳 《国防科技大学学报》 EI CAS CSCD 北大核心 1995年第3期26-32,共7页
STUDYONREALISTICTECHNOLOGYOFCONDITIONMONITORINGANDFAULTDIAGNOSTICSYSTEMFORSHIPPINGPOWERDEVICESWenXisen;LiYue... STUDYONREALISTICTECHNOLOGYOFCONDITIONMONITORINGANDFAULTDIAGNOSTICSYSTEMFORSHIPPINGPOWERDEVICESWenXisen;LiYue;TangBingyang(Dep... 展开更多
关键词 状态监测 故障诊断 轮船 动力装置
在线阅读 下载PDF
融合时频图与分布适应的轴承故障诊断方法 被引量:1
6
作者 许志恒 葛鲲鹏 《机械设计与制造》 北大核心 2025年第4期51-59,共9页
针对实际工业场景下轴承故障诊断仍面临的缺少足量故障样本和变工况导致数据分布差异,提出一种融合时频图与分布适应的轴承故障诊断方法。首先,采用连续小波变换处理原始振动信号并提取时频图;其次,构建卷积神经网络实现深度特征自适应... 针对实际工业场景下轴承故障诊断仍面临的缺少足量故障样本和变工况导致数据分布差异,提出一种融合时频图与分布适应的轴承故障诊断方法。首先,采用连续小波变换处理原始振动信号并提取时频图;其次,构建卷积神经网络实现深度特征自适应提取;其次,提出一种改进平衡分布对齐的域适应方法,通过融合最大边际准则实现缩小不同域间分布差异过程中提高特征数据可分性,并基于源域特征数据训练获得自适应分类器,实现不同工况下的轴承故障识别与分类;最后,为验证所提出方法的有效性与泛化能力,采用两种轴承故障数据集开展平衡与非平衡数据样本下的跨域故障诊断实验分析,实验结果表明所提出方法在两种数据集上的平均故障诊断准确率最高分别可达100%和97.50%,明显优于基于经典迁移学习方法构建的对比模型。 展开更多
关键词 故障诊断 振动信号 时频图 卷积神经网络 迁移学习
在线阅读 下载PDF
考虑转速波动时的双馈风力发电机气隙静偏心故障下定子振动特性分析
7
作者 王萱 万书亭 +2 位作者 张伯麟 张雄 绳晓玲 《太阳能学报》 北大核心 2025年第5期448-457,共10页
提出并研究考虑转速波动的气隙静偏心故障特征分析,首先对故障特性进行理论分析,使用磁密-电磁力密度法推导得到考虑转速波动前后的气隙周向磁密、磁密随时间变化以及电磁力密度的解析表达,并分析其变化特性。然后,使用Matlab/Simulink-... 提出并研究考虑转速波动的气隙静偏心故障特征分析,首先对故障特性进行理论分析,使用磁密-电磁力密度法推导得到考虑转速波动前后的气隙周向磁密、磁密随时间变化以及电磁力密度的解析表达,并分析其变化特性。然后,使用Matlab/Simulink-Simplorer-Maxwell 2D建立包括气隙静偏心和发电机组控制模块的双馈风力发电机组模型及转速波动模型。最后,在可模拟双馈风力发电机转速波动和气隙静偏心的实验平台进行实验验证,获得考虑转速波动前后的定子铁芯振动信号,使用基于短时傅里叶变换的同步压缩变换获取振动信号的时频特征。结果表明,考虑转速波动之后,气隙静偏心将导致磁密中存在3k(k=1,2,3,…)倍机械转频,电磁力密度和振动信号中存在2f±3kf_(w)(f_(w)为叶轮转频)的频率,通过同步压缩变换可提取到频率分量2f±3kf_(w)t,其中2f±3kf_(w)t是转速波动引起的。 展开更多
关键词 风电机组 风速 故障诊断 气隙静偏心 定子振动特性 同步压缩变换
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取 被引量:1
8
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于改进RCMDE与优化随机森林的掘进机截割头故障诊断
9
作者 马天兵 杨婷 +3 位作者 李长鹏 杜菲 史瑞 于平平 《科学技术与工程》 北大核心 2025年第9期3629-3636,共8页
针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截... 针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截割头故障诊断新方法。首先,利用RCMFDE全面表征掘进机截割头故障特征信息,构建故障特征数据集;其次,采用HORF对故障类型进行训练和测试,实现掘进机截割头的故障模式识别;最后,将所提方法运用在掘进机截割头实验数据分析中,并将其与现有的多尺度模糊熵、精细复合多尺度散布熵故障特征提取方法做比较。实验结果显示:RCMFDE在挖掘故障特征信息方面优于其他两种熵方法,而河马随机森林在故障分类方面优于极限学习机和支持向量机等分类器,所提故障识别模型可以更加精确地识别掘进机截割头的故障类型,且识别准确率达到100%。 展开更多
关键词 掘进机 截割振动信号 特征提取 故障诊断 精细复合多尺度模糊散布熵
在线阅读 下载PDF
基于能量熵与GWO-ELM的海缆故障信号识别方法
10
作者 张涛 刘昊 +3 位作者 张培蕾 刘哲恒 时光蕤 范希评 《光通信研究》 北大核心 2025年第4期71-78,共8页
【目的】针对海底电缆振动信号研究中特征提取效果不佳以及故障诊断效率较低的问题,文章提出了一种基于能量熵特征和灰狼优化(GWO)算法优化极限学习机(ELM)的海缆故障诊断方法。【方法】首先,采用有限元仿真软件模拟得出不同工况的海缆... 【目的】针对海底电缆振动信号研究中特征提取效果不佳以及故障诊断效率较低的问题,文章提出了一种基于能量熵特征和灰狼优化(GWO)算法优化极限学习机(ELM)的海缆故障诊断方法。【方法】首先,采用有限元仿真软件模拟得出不同工况的海缆光单元振动速度信号;然后,结合经验模态分解(EMD)算法将振动信号分解为4个含有固有特征的本征模函数(IMF)分量,提取计算各个IMF分量的能量熵,将其作为指标构建特征向量;最后,将不同工况下的特征向量样本输入采用GWO-ELM方法的分类器中进行工作状态的判断。【结果】在足量样本以及多次计算求平均值的情况下,通过数据总结得出该方法对海缆不同状态的识别准确率能够达到97.4%,分类算法识别时间低至0.9685 s,并设置了多个算法对比组,结果表明,文章所提方法在提取信号特征以及故障诊断方面有着良好效果。【结论】目前海缆在线监测常采用温度和应力分析,文章所提方法在大大降低测量难度的同时,故障特征提取效果较好,能够准确识别海缆的实时工作状态。 展开更多
关键词 海底电缆 振动信号 能量熵 灰狼优化算法 极限学习机 故障诊断
在线阅读 下载PDF
我国破碎设备智能化技术研究进展
11
作者 蒋祥龙 丁珠玉 赵环帅 《中国煤炭》 北大核心 2025年第5期120-128,共9页
智能化是未来各行业的重要发展趋势,也是破碎设备未来发展的必由之路及产业升级的核心内容,受到了国内外广泛的关注。为了掌握当前破碎设备在智能化过程中关键技术的研究进展,结合智能化的相关概念及政策,介绍了破碎机智能化的研究背景... 智能化是未来各行业的重要发展趋势,也是破碎设备未来发展的必由之路及产业升级的核心内容,受到了国内外广泛的关注。为了掌握当前破碎设备在智能化过程中关键技术的研究进展,结合智能化的相关概念及政策,介绍了破碎机智能化的研究背景,总结了国内外近年来破碎机智能化过程中在虚拟技术、故障诊断、自动控制、在线监控等关键技术方面取得的最新研究成果,结合破碎设备行业面临的新形势,针对破碎机智能化在发展过程中存在智能化程度较低、配套技术制约、标准体系构建不足、人才培养有待加强等一些突出问题,提出了相应的对策与建议。 展开更多
关键词 破碎设备 智能化 虚拟技术 故障诊断 自动控制 在线监控
在线阅读 下载PDF
基于故障逻辑的民机液压状态监控与故障诊断
12
作者 冯蕴雯 潘维煌 +1 位作者 路成 刘佳奇 《系统工程与电子技术》 北大核心 2025年第3期842-854,共13页
当前民用飞机的监测数据难以有效应用于状态监测与故障诊断,限制了其安全性和可靠性的提升。为此,本文提出一种基于液压系统部件设计与监测数据的决策树模型,用于实现液压系统运行状态的监控;同时提出一种基于故障逻辑与运行数据的迁移... 当前民用飞机的监测数据难以有效应用于状态监测与故障诊断,限制了其安全性和可靠性的提升。为此,本文提出一种基于液压系统部件设计与监测数据的决策树模型,用于实现液压系统运行状态的监控;同时提出一种基于故障逻辑与运行数据的迁移学习模型,用于故障诊断与定位,以提升状态监控能力与故障诊断效率。首先,分析液压系统原理,依据机组操作手册(flight crew operating manual,FCOM)额定参数与监测数据建立运行监控指标,采用决策树模型监控液压系统的运行状态;随后通过故障形成条件梳理成逻辑图,结合逻辑图的输入信号参数采集快速存取记录器(quick access recorder,QAR)数据,开发迁移学习模型实现故障诊断与定位。最后以某型国产民机液压低压故障为例,验证了所提方法的应用效果。结果表明,该运行状态监控方法能有效量化液压系统状态,故障诊断方法则能高效识别故障原因。 展开更多
关键词 状态监控 故障诊断与定位 逻辑图 监测参数 迁移学习
在线阅读 下载PDF
结合小波变换与注意力机制的轴承故障诊断
13
作者 赵玲 孟阳 +2 位作者 蒋振霖 吕颖 王航 《振动.测试与诊断》 北大核心 2025年第3期430-437,616,共9页
针对传统一维轴承振动信号特征表达效果较弱、轴承故障数据时频特征提取困难及其诊断精度较低等问题,提出一种基于小波变换与注意力机制网络(wavelet transform and attention mechanism net,简称WTA-Net)的轻量化轴承故障诊断方法。首... 针对传统一维轴承振动信号特征表达效果较弱、轴承故障数据时频特征提取困难及其诊断精度较低等问题,提出一种基于小波变换与注意力机制网络(wavelet transform and attention mechanism net,简称WTA-Net)的轻量化轴承故障诊断方法。首先,通过小波变换将滚动轴承的一维振动时序信号转化为二维时频图;其次,针对网络训练时梯度消失的问题,提出改进的轻量化骨干网络R-ResNet18提取二维时频图特征;然后,在网络不同尺度的特征层嵌入时空注意力机制(convolutional block attention module,简称CBAM),使网络更加关注二维时频图的关键信息特征;最后,采用标签平滑的交叉熵损失函数来对网络模型进行训练。实验结果表明,所提出方法能够精准地辨识不同故障类型和故障严重程度,在凯斯西储大学轴承数据集10个分类任务中可达到99.9%的分类精度,模型应用在辛辛那提大学智能维护系统(intelligent maintenance systems,简称IMS)轴承数据集上的分类精度达到了99.9%,提取的特征信息区分度高,具有良好的泛化性和鲁棒性。 展开更多
关键词 小波变换 交叉熵损失 注意力机制 故障诊断 振动信号
在线阅读 下载PDF
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:1
14
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布熵 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
基于CWT-IDenseNet的滚动轴承故障诊断方法
15
作者 贾广飞 梁汉文 +2 位作者 杨金秋 武哲 韩雨欣 《河北科技大学学报》 北大核心 2025年第2期129-140,共12页
针对一维信号所含信息不全面和DenseNet网络在变工况下存在过拟合等问题,提出了基于连续小波变换时频图像和改进密集连接卷积网络(improved DenseNet,IDenseNet)的滚动轴承故障诊断方法CWT-IDenseNet。首先,将一维振动信号通过CWT转为... 针对一维信号所含信息不全面和DenseNet网络在变工况下存在过拟合等问题,提出了基于连续小波变换时频图像和改进密集连接卷积网络(improved DenseNet,IDenseNet)的滚动轴承故障诊断方法CWT-IDenseNet。首先,将一维振动信号通过CWT转为二维时频图像;其次,对DenseNet网络进行改进,将DenseNet第1个卷积块中的ReLU激活函数替换为Swish激活函数(Swish激活函数更平滑);同时,在网络中引入基于风格的卷积神经网络重校准模块(style-based recalibration module,SRM)和空间与通道注意力机制模块(convolutional block attention module,CBAM),SRM关注特征通道权重,CBAM则从通道和空间2个维度增强特征表达能力,进而得到IDenseNet;最后,将二维时频图像输入到IDenseNet模型中进行特征提取和故障诊断,通过模型的Softmax层输出故障诊断结果。结果表明,所提方法在恒定工况及变工况下的平均故障识别准确率均达到97.80%,且在迁移学习模型中,平均故障识别准确率达到了99.44%。CWT-IDenseNet方法可以有效提高模型的泛化能力,在恒定工况及变工况下具有显著优势,对提高滚动轴承故障诊断的准确率和可靠性具有参考价值。 展开更多
关键词 机械动力学与振动 滚动轴承故障诊断 连续小波变换 密集连接卷积网络 注意力机制
在线阅读 下载PDF
基于声振特征融合和改进级联森林的离心泵故障诊断 被引量:1
16
作者 厉强国 陈品 陈剑 《组合机床与自动化加工技术》 北大核心 2025年第2期217-221,共5页
针对故障诊断中单一来源信号特征信息表征不充分以及深度神经网络调参复杂、构建难度大等问题,提出了一种基于声振特征融合和改进级联森林的离心泵故障诊断方法。首先,对多个传感器采集的声振信号进行小波包去噪,提取降噪信号的时域特... 针对故障诊断中单一来源信号特征信息表征不充分以及深度神经网络调参复杂、构建难度大等问题,提出了一种基于声振特征融合和改进级联森林的离心泵故障诊断方法。首先,对多个传感器采集的声振信号进行小波包去噪,提取降噪信号的时域特征、频域特征和小波包能量特征。利用核主成分分析(kernel principal component analysis,KPCA)对声振信号特征进行特征融合与数据降维,得到特征矩阵。在深度级联森林的基础上引入极端随机森林构建级联层,并添加XGBoost预测器提升模型性能,得到改进级联森林模型。利用改进的级联森林模型进行故障分类,试验结果表明,该方法能够有效识别离心泵的故障类型,并且声振信号特征融合相比于单源信号特征能够有效提升诊断精度。 展开更多
关键词 离心泵 故障诊断 特征提取 声振融合 改进级联森林
在线阅读 下载PDF
多尺度迁移学习的轴承故障诊断 被引量:2
17
作者 尹洪申 刘文峰 +1 位作者 俞啸 丁恩杰 《机械设计与制造》 北大核心 2025年第1期10-14,共5页
针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成... 针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成不同频率的本征模态函数(Intrinsic Mode Function,IMF);其次将得到的不同频率的IMF与卷积神经网络中不同尺寸卷积核提取到的丰富特征互补构建多尺度特征融合;采用联合最大平均差异(Joint Maximum Mean Discrep⁃ancy,JMMD)特征迁移的方法使源域与目标域联合分布差异最小化,然后通过多尺度融合模型进行分类识别;最后在凯斯西储大学轴承数据集和江南大学数据集对该方法进行了验证。实验结果证明该模型在两种不同工况和型号的轴承数据集中均取得较高的准确率,表现出模型良好的泛化能力。 展开更多
关键词 振动信号 故障诊断 多尺度特征融合 迁移学习 联合最大平均差异 特征迁移
在线阅读 下载PDF
基于数字孪生的变压器故障诊断方法研究 被引量:1
18
作者 江伦 王大江 +3 位作者 孙文磊 包胜辉 刘涵 常赛科 《系统仿真学报》 北大核心 2025年第3期775-790,共16页
针对已有的变压器故障诊断智能算法并不能快速高效的识别变压器故障,导致故障误检及不能被及时检测的问题,提出了一种利用改进麻雀优化算法优化XGBoost的双层故障诊断模型结合数字孪生技术的变压器故障诊断方法。采用先进传感器采集变... 针对已有的变压器故障诊断智能算法并不能快速高效的识别变压器故障,导致故障误检及不能被及时检测的问题,提出了一种利用改进麻雀优化算法优化XGBoost的双层故障诊断模型结合数字孪生技术的变压器故障诊断方法。采用先进传感器采集变压器的油气数据和温度数据,利用5G模块将实时数据传到数字孪生系统,设置设备告警阈值实时监控温度数据;使用改进麻雀优化算法优化XGBoost的双层故障诊断模型对油气数据进行实时故障识别处理,结合数字孪生技术对故障进行识别与预警。实验结果表明:该方法提高了故障识别与预警的效率和稳定性,且相较于现有的变压器故障诊断方法具有显著优势。 展开更多
关键词 变压器 数字孪生 故障诊断 实时监控 预警
在线阅读 下载PDF
邻近共地高压电缆线路护层电流特征与故障诊断 被引量:1
19
作者 李根 周文俊 +3 位作者 喻莹 仇龙 杨斌 艾永恒 《高电压技术》 北大核心 2025年第2期698-707,I0018,I0019,共12页
地下高压电缆已是城市电能传输的主要通道,1条隧道内近距离敷设有多条电缆线路,这些线路共用1个接地网。线路之间的电磁感应与共地后护层回路的相互连通导致了护层电流经常超过标准值,但运维人员排查后确认一些线路接地系统连接良好且... 地下高压电缆已是城市电能传输的主要通道,1条隧道内近距离敷设有多条电缆线路,这些线路共用1个接地网。线路之间的电磁感应与共地后护层回路的相互连通导致了护层电流经常超过标准值,但运维人员排查后确认一些线路接地系统连接良好且不存在故障。为此建立了邻近高压电缆线路各状态下护层电流的计算模型,分析了排列方式、共用接地与小段长度对电缆线路护层电流的影响,以护层回路电流平均值与偏差值为评价标准,分析了护层开路、护层间短路与护层对地短路状态下护层电流的分布特征,并构建了故障诊断判据。接地系统无故障状态下,护层回路电流均值接近,偏差值在电容电流范围内。护层开路故障造成回路电流均值减小,护层短路故障造成电流偏差值增大。该故障诊断方法不依赖负荷电流的测量与理论正常值的计算,在现场中具有较高的可行性与泛用性。 展开更多
关键词 高压电缆 状态监测 接地系统 护层电流 故障诊断
在线阅读 下载PDF
基于改进SAE(堆叠自编码器)与温振融合的高速列车轴箱轴承轻微故障诊断方法 被引量:1
20
作者 徐潇 宋冬利 王梓帆 《城市轨道交通研究》 北大核心 2025年第4期227-232,237,共7页
[目的]高速列车轴箱轴承服役环境复杂多变,其单源信号对微弱故障的诊断精度不足。为了提高轴箱轴承早期微弱故障的诊断精度,有必要结合轴承温度、振动多源故障信息,研究一种温振特征融合驱动的高速列车轴箱轴承轻微故障诊断方法。[方法... [目的]高速列车轴箱轴承服役环境复杂多变,其单源信号对微弱故障的诊断精度不足。为了提高轴箱轴承早期微弱故障的诊断精度,有必要结合轴承温度、振动多源故障信息,研究一种温振特征融合驱动的高速列车轴箱轴承轻微故障诊断方法。[方法]首先,设计了一种AE(自编码器)驱动的轴承温度特征提取方法,以获取轴承异常温度特征,并采用EMD(经验模态分解)方法对振动信号进行处理,以获取有效振动IMF(本征模态函数)分量的统计特征。然后,通过优化基于SAE(堆叠自编码器)的降维算法,提出了一种温振特征有效融合方法,以实现温度特征与振动特征的非线性融合与降维。最终,结合BP(反向传播)神经网络,建立了基于温振特征融合的轴箱轴承轻微故障诊断模型。并利用高速列车滚动轴承试验台采集的数据对模型进行验证。[结果及结论]相较于基于单源信号特征的故障诊断方法,基于温振特征融合的诊断方法具有更高的故障诊断精度,平均诊断准确率可达到99%以上。相较于采用PCA(主成分分析)温振模型,采用所提的温振融合轴承诊断模型更准确有效。 展开更多
关键词 高速列车 轴箱轴承 轻微故障诊断 特征提取 温振融合 自编码器
在线阅读 下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部