To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen...To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
This paper considers robust fault detection and diagnosis for input uncertain nonlinear systems. It proposes a multi-objective fault detection criterion so that the fault residual is sensitive to the fault but insensi...This paper considers robust fault detection and diagnosis for input uncertain nonlinear systems. It proposes a multi-objective fault detection criterion so that the fault residual is sensitive to the fault but insensitive to the uncertainty as much as possible. Then the paper solves the proposed criterion by maximizing the smallest singular value of the transformation from faults to fault detection residuals while minimizing the largest singular value of the transformation from input uncertainty to the fault detection residuals. This method is applied to an aircraft which has a fault in the left elevator or rudder. The simulation results show the proposed method can detect the control surface failures rapidly and efficiently.展开更多
To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptiv...To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.展开更多
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u...A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
A novel approach for the actuator fault diagnosis of time-delay systems is presented by using an adaptive observer technique. Systems without model uncertainty are initially considered, followed by a discussion of a g...A novel approach for the actuator fault diagnosis of time-delay systems is presented by using an adaptive observer technique. Systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system is subjected to either model uncertainty or external disturbance. An adaptive diagnostic algorithm is developed to diagnose the fault, and a modified version is proposed for general system to improve robustness. The selection of the threshold for fault detection is also discussed. Finally, a numerical example is given to illustrate the efficiency of the proposed method.展开更多
A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults...A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What's more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice.展开更多
基金This work was supported by the National Key Research and Development Program Topics(2020YFC2200902)the National Natural Science Foundation of China(11872110).
文摘To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
基金supported by the National Natural Science Foundation of China(60328304)the"111"project of Beihang University (B07009)
文摘This paper considers robust fault detection and diagnosis for input uncertain nonlinear systems. It proposes a multi-objective fault detection criterion so that the fault residual is sensitive to the fault but insensitive to the uncertainty as much as possible. Then the paper solves the proposed criterion by maximizing the smallest singular value of the transformation from faults to fault detection residuals while minimizing the largest singular value of the transformation from input uncertainty to the fault detection residuals. This method is applied to an aircraft which has a fault in the left elevator or rudder. The simulation results show the proposed method can detect the control surface failures rapidly and efficiently.
基金Project(90820302) supported by the National Natural Science Foundation of ChinaProject(20110491272) supported by China Postdoctoral Science Foundation of China+2 种基金Project(2012QNZT060) supported by the Fundamental Research Fund for the Central Universities of ChinaProject(11B070) supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProject(2010-2012) supported by the Postdoctoral Science Foundation of Central South University,China
文摘To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320600), National Natural Science Foundation of China (60828007, 60534010, 60821063), the Leverhulme Trust (F/00. 120/BC) in the United Kingdom, and the 111 Project (B08015)
基金supported by the National Natural Science Foundation of China(616732546157310061573101)
文摘A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.
基金Supported by Nationai Natural Science Foundation of China (61074085), Beijing Natural Science Foundation (4122029, 4142035), and the Fundamental Research Funds for the Central Universities (F_RF-SD-12-008B, FRF-AS- 11-004B)
基金This project was supported by the National Natural Science Foundation of China (60274058) .
文摘A novel approach for the actuator fault diagnosis of time-delay systems is presented by using an adaptive observer technique. Systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system is subjected to either model uncertainty or external disturbance. An adaptive diagnostic algorithm is developed to diagnose the fault, and a modified version is proposed for general system to improve robustness. The selection of the threshold for fault detection is also discussed. Finally, a numerical example is given to illustrate the efficiency of the proposed method.
基金Project Supported by National Natural Science Foundation of China(60574081).
文摘A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What's more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice.