期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis 被引量:1
1
作者 KULEVOME Delanyo Kwame Bensah WANG Hong WANG Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期233-246,共14页
Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of... Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition. 展开更多
关键词 bearing failure deep neural network fault classification health indicator prognostics and health management
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部