期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进Fast R-CNN的红外图像行人检测研究 被引量:14
1
作者 车凯 向郑涛 +2 位作者 陈宇峰 吕坚 周云 《红外技术》 CSCD 北大核心 2018年第6期578-584,共7页
针对红外图像行人检测任务中行人细节信息少,特征提取计算量大以及易受背景影响等问题,提出了一种改进的Fast R-CNN(快速区域卷积神经网络)红外图像行人检测方法。改进主要涉及两个方面:(1)结合红外图像的特点提出了一种自适应ROI提取算... 针对红外图像行人检测任务中行人细节信息少,特征提取计算量大以及易受背景影响等问题,提出了一种改进的Fast R-CNN(快速区域卷积神经网络)红外图像行人检测方法。改进主要涉及两个方面:(1)结合红外图像的特点提出了一种自适应ROI提取算法,在不影响检测准确率的前提下,降低了ROI数量,使得网络的计算量减小;(2)提出了一种加权锚点框的定位机制,基于3种不同宽高比锚点框的检测置信度进行坐标加权,获得更准确的定位框。实验结果表明,本文提出的改进方法与传统的Haar+LBP+HOG+SVM算法及Fast R-CNN算法相比,红外图像行人检测的准确率从80.3%和91.2%提高到92.3%,检测速度从68 ms/f和25 ms/f提高到12 ms/f,提高了系统的性能。 展开更多
关键词 快速区域卷积神经网络 红外图像 行人检测 自适应ROI提取 加权锚点框
在线阅读 下载PDF
基于Faster R-CNN算法的船舶识别检测 被引量:9
2
作者 崔巍 杨亮亮 +3 位作者 夏荣 牟向伟 樊晓伟 杨海峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第2期182-187,223,共7页
目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,... 目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,用于物体检测和分类时,可以实现高精度实时监测。文章应用Faster R-CNN算法对卫星图像中的船舶进行识别和检测,并与传统尺度不变特征转换(scale-invariant feature transform,SIFT)算法、快速区域卷积神经网络(fast region-based convolutional neural network,Fast R-CNN)算法进行对比。研究结果表明,Faster R-CNN算法比传统SIFT算法和Fast R-CNN算法有更好的收敛速度和识别精度,该算法在船舶识别方面具有较大潜力。 展开更多
关键词 卫星图像 船舶检测 更快速的区域卷积神经网络(faster r-cnn) 尺度不变特征转换(SIFT) 快速区域卷积神经网络(fast r-cnn)
在线阅读 下载PDF
基于流量时空特征的fast-flux僵尸网络检测方法 被引量:12
3
作者 牛伟纳 蒋天宇 +3 位作者 张小松 谢娇 张俊哲 赵振扉 《电子与信息学报》 EI CSCD 北大核心 2020年第8期1872-1880,共9页
僵尸网络已成为网络空间安全的主要威胁之一,虽然目前可通过逆向工程等技术来对其进行检测,但是使用了诸如fast-flux等隐蔽技术的僵尸网络可以绕过现有的安全检测并继续存活。现有的fast-flux僵尸网络检测方法主要分为主动和被动两种,... 僵尸网络已成为网络空间安全的主要威胁之一,虽然目前可通过逆向工程等技术来对其进行检测,但是使用了诸如fast-flux等隐蔽技术的僵尸网络可以绕过现有的安全检测并继续存活。现有的fast-flux僵尸网络检测方法主要分为主动和被动两种,前者会造成较大的网络负载,后者存在特征值提取繁琐的问题。因此为了有效检测fast-flux僵尸网络并解决传统检测方法中存在的问题,该文结合卷积神经网络和循环神经网络,提出了基于流量时空特征的fast-flux僵尸网络检测方法。结合CTU-13和ISOT公开数据集的实验结果表明,该文所提检测方法和其他方法相比,准确率提升至98.3%,召回率提升至96.7%,精确度提升至97.5%。 展开更多
关键词 僵尸网络 fast-flux 卷积神经网络 循环神经网络
在线阅读 下载PDF
基于Faster RCNN的行人检测方法 被引量:37
4
作者 张汇 杜煜 +3 位作者 宁淑荣 张永华 杨硕 杜晨 《传感器与微系统》 CSCD 2019年第2期147-149,15,共4页
借鉴目标识别领域的快速区域卷积神经网络(Fast RCNN),提出了基于Faster RCNN的行人检测方法,利用CNN提取图像特征,通过聚类和构建区域建议网络(RPN)提取可能含有行人的区域,利用检测网络对目标区域进行判别和分类,并在INRIA数据集中进... 借鉴目标识别领域的快速区域卷积神经网络(Fast RCNN),提出了基于Faster RCNN的行人检测方法,利用CNN提取图像特征,通过聚类和构建区域建议网络(RPN)提取可能含有行人的区域,利用检测网络对目标区域进行判别和分类,并在INRIA数据集中进行了测试验证。实验结果表明:相比基于可变形的组件模型(DPM)的行人检测方法,提出的方法,在测试集上检测准确度达到92. 7%,相比现有的其他方法,其检测效果更好。 展开更多
关键词 快速区域卷积神经网络 区域建议网络 行人检测 深度学习
在线阅读 下载PDF
基于改进Fast-SCNN的塑瓶气泡缺陷实时分割算法
5
作者 付磊 任德均 +3 位作者 吴华运 郜明 邱吕 胡云起 《计算机应用》 CSCD 北大核心 2020年第6期1824-1829,共6页
在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割... 在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割算法。该分割算法的基础框架为Fast-SCNN,而为弥补原有网络分割尺寸的鲁棒性不足,借鉴了SENet的通道间信息的利用与多级跳跃连接的思想,具体为网络进一步下采样提取深层特征,在解码阶段将上采样操作融合SELayer模块,同时增加两次与网络浅层的跳跃连接。设计四组对比实验,在气泡数据集上以平均交并比(MIoU)与算法单张分割时间作为评价指标。实验结果表明,改进Fast-SCNN的综合性能最好,其MIoU为97.08%,其预处理后的医用塑瓶的平均检测时间为24.4 ms,其边界分割准确率较Fast-SCNN提升了2.3%,增强了对微小气泡的分割能力,而且该网络的MIoU相较现有的U-Net提升了0.27%,时间上降低了7.5 ms,综合检测性能远超过全卷积神经网络(FCN-8s)。该算法能够有效地对较小的、边缘不清晰的气泡进行分割,满足对气泡缺陷实时分割检测的工程要求。 展开更多
关键词 语义分割 图像处理 快速分割卷积神经网络(fast-SCNN) SENet 缺陷检测
在线阅读 下载PDF
基于Faster-RCNN及一维曲线分析的表计指针识读方法
6
作者 钟力强 屈娟娟 +1 位作者 姜新丽 黄炎 《广东电力》 2022年第2期27-35,共9页
针对机器人部署调试中表计需逐个配置的问题,提出基于神经网络学习及一维曲线分析的表盘指针、刻度识别方法。基于Faster-RCNN(faster region-based convolutional network),初步识别刻度盘位置,从而确定指针运动圆心。将图像以圆心为... 针对机器人部署调试中表计需逐个配置的问题,提出基于神经网络学习及一维曲线分析的表盘指针、刻度识别方法。基于Faster-RCNN(faster region-based convolutional network),初步识别刻度盘位置,从而确定指针运动圆心。将图像以圆心为中心进行极坐标展开后,通过分析一维曲线的频域特征筛选刻度所在区域,统计不同区域灰度峰谷值的形式确定刻度和指针的真实位置。最后对几种典型表计进行实验分析,验证所提方法的有效性。实验结果显示,该方法对表计样本量较多的表计类型,可成功实现自动读数功能。 展开更多
关键词 表计识别 指针 快速傅里叶变换 神经网络 faster-RCNN
在线阅读 下载PDF
多源信息融合的电机小样本故障诊断
7
作者 贾晗 尚前明 金华标 《机械科学与技术》 北大核心 2025年第5期847-856,共10页
在实际的工程应用中,电机故障发生的频率极低,电机的故障数据通常较少,正常数据与故障数据存在严重的比例失衡,这对基于数据驱动的电机故障诊断方法提出了挑战。针对这一问题,该文提出一种多源信息融合的电机故障诊断方法。首先,采用快... 在实际的工程应用中,电机故障发生的频率极低,电机的故障数据通常较少,正常数据与故障数据存在严重的比例失衡,这对基于数据驱动的电机故障诊断方法提出了挑战。针对这一问题,该文提出一种多源信息融合的电机故障诊断方法。首先,采用快速谱峭度的特征提取方法将电机定子电流信号和振动加速度信号转化为谱峭度特征图像;其次,搭建一种双通道残差网络模型融合振动信号和电流信号的故障特征并完成故障分类;最后,利用实验台架所采集的5种故障电机数据对多源信息融合的故障诊断方法进行了验证。研究结果表明:在故障数据严重缺失的情况下,故障诊断准确度可以达到95%以上,远高于传统的基于数据驱动的故障诊断方法,同时该方法还可以同样应用于旋转机械设备的故障诊断,具备良好的泛化性。 展开更多
关键词 故障诊断 信息融合 快速谱峭度法 残差神经网络 卷积注意力模块
在线阅读 下载PDF
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究
8
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 二维卷积神经网络(2DCNN) 机器学习 时空特征 快速预报
在线阅读 下载PDF
基于FFT-CNN-GCN的电网故障诊断
9
作者 安春丽 张碧玲 +2 位作者 赵国安 王博 刘岩 《浙江大学学报(工学版)》 北大核心 2025年第10期2205-2212,共8页
为了实现电网故障类型判断、故障线路定位和故障距离判断,提出融合快速傅里叶变换(FFT)、卷积神经网络(CNN)和图卷积神经网络(GCN)的电网故障诊断新模型.通过FFT对电压和电流信号进行时域和频域分解,提取信号的基波幅值和相位,利用CNN... 为了实现电网故障类型判断、故障线路定位和故障距离判断,提出融合快速傅里叶变换(FFT)、卷积神经网络(CNN)和图卷积神经网络(GCN)的电网故障诊断新模型.通过FFT对电压和电流信号进行时域和频域分解,提取信号的基波幅值和相位,利用CNN提取分解后数据的时序特征,引入层归一化增强模型的稳定性.结合GCN处理电网空间拓扑,提取并整合空间特征.通过对IEEE39节点电网系统的建模和仿真验证模型的有效性.实验结果表明,所提模型具有较强的泛化能力,在不同任务、采样间隔和噪声影响下的故障诊断准确率优于现有模型. 展开更多
关键词 故障类型 故障线路 故障距离 快速傅里叶变换(FFT) 卷积神经网络(CNN) 图卷积神经网络(GCN)
在线阅读 下载PDF
基于FFT-DC-GRU-NLA的中长期居民用电量预测模型
10
作者 章诚 申超 《现代电子技术》 北大核心 2025年第16期88-96,共9页
针对现有的中长期居民用电量预测模型中存在复杂电力数据建模难、信息表示能力差、模型预测精度低等问题,提出一种基于FFT-DC-GRU-NLA的中长期居民用电量预测模型。首先利用快速傅里叶变换(FFT)对用电量数据进行分解,通过频域分解提取... 针对现有的中长期居民用电量预测模型中存在复杂电力数据建模难、信息表示能力差、模型预测精度低等问题,提出一种基于FFT-DC-GRU-NLA的中长期居民用电量预测模型。首先利用快速傅里叶变换(FFT)对用电量数据进行分解,通过频域分解提取多周期分量,得到一组二维子序列;然后将其作为自主设计的信息表示模块的输入,通过融合卷积神经网络、门控循环单元和非局部注意力机制,实现了对二维子序列的多尺度信息表示和深度特征提取;最终,深度特征经过全连接层重新构建,并采用残差结构进行迭代预测。在一个居民用电量的公开数据集上与当前电力预测领域内的多个先进模型相比,所提模型在96、192、336、720这4个预测长度上均取得了最高的预测精度;此外,该模型分别在两个电力预测公开数据集上也取得了较好的预测精度。实验结果表明,所提模型能够有效提升中长期居民用电量预测的精度且具有较好的泛化性。 展开更多
关键词 中长期用电量预测 快速傅里叶变换 卷积神经网络 门控循环单元 非局部注意力机制 多尺度信息 深度特征提取
在线阅读 下载PDF
基于RISC-Ⅴ的深度可分离卷积神经网络加速器 被引量:1
11
作者 曹希彧 陈鑫 魏同权 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2536-2551,共16页
人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷... 人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷积神经网络对高性能计算的需求.为了解决这一问题,本文设计了一个基于RISC-Ⅴ的轻量化深度可分离卷积神经网络加速器,旨在弥补RISC-Ⅴ处理器的卷积计算能力的不足.该加速器支持深度可分离卷积中的两个关键算子,即深度卷积和点卷积,并能够通过共享硬件结构提高资源利用效率.深度卷积计算流水线采用了高效的Winograd卷积算法,并使用2×2数据块组合拼接成4×4数据片的方式来减少传输数据冗余.同时,通过拓展RISC-Ⅴ处理器端指令,使得加速器能够实现更灵活的配置和调用.实验结果表明,相较于基础的RISC-Ⅴ处理器,调用加速器后的点卷积和深度卷积计算取得了显著的加速效果,其中点卷积加速了104.40倍,深度卷积加速了123.63倍.与此同时,加速器的性能功耗比达到了8.7GOPS/W.本文的RISC-Ⅴ处理器结合加速器为资源受限环境下卷积神经网络的部署提供了一个高效可行的选择. 展开更多
关键词 神经网络 深度可分离卷积 RISC-Ⅴ Winograd快速卷积 硬件加速
在线阅读 下载PDF
一种基于CNN与FFT‑ELM的输电线路故障识别与定位方法 被引量:14
12
作者 裴东锋 刘勇 +3 位作者 闫柯柯 郭威 宋福如 田志杰 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第1期164-170,共7页
及时、准确地检测输电线路故障类型与位置是提高电力系统可靠性最重要的问题之一,为此提出一种基于卷积神经网络(convolutional neural networks,CNN)与基于快速傅里叶变换(fast Fourier transform,FFT)的极限学习机(extreme learning m... 及时、准确地检测输电线路故障类型与位置是提高电力系统可靠性最重要的问题之一,为此提出一种基于卷积神经网络(convolutional neural networks,CNN)与基于快速傅里叶变换(fast Fourier transform,FFT)的极限学习机(extreme learning machine,ELM)分类模型并行的输电线路故障识别及定位方法。首先,以故障电压时序图作为输入,构建CNN;然后,利用FFT将时域故障电压数据分解,提取各频段的电压峰值与相角作为故障特征样本;接着,以提取的故障特征样本集作为输入,构建ELM网络;最后,通过特征融合层将2个神经网络进行融合,输出故障类型和定位结果。实验结果表明,此方法对输电线路故障识别的准确率为99.95%、故障定位误差在500 m以内、平均误差为263.5 m,可靠性优于其他模型。 展开更多
关键词 故障识别及定位 输电线路 并行神经网络 卷积神经网络 快速傅里叶变换 极限学习机
在线阅读 下载PDF
基于U-net卷积神经网络的电磁场快速计算方法 被引量:10
13
作者 张宇娇 赵志涛 +2 位作者 徐斌 孙宏达 黄雄峰 《电工技术学报》 EI CSCD 北大核心 2024年第9期2730-2742,共13页
有限元法(FEM)是物理场分析常用的方法,但庞大的求解自由度导致FEM计算成本很大。针对FEM计算时间长的问题,构建一种基于U-net卷积神经网络的物理场快速计算方法,将样本数据通过栅格化或点云化处理后作为神经网络的输入和标签数据,通过... 有限元法(FEM)是物理场分析常用的方法,但庞大的求解自由度导致FEM计算成本很大。针对FEM计算时间长的问题,构建一种基于U-net卷积神经网络的物理场快速计算方法,将样本数据通过栅格化或点云化处理后作为神经网络的输入和标签数据,通过网络训练实现物理场的快速计算并研究该方法在电磁场计算中的应用。结果表明,该方法能准确有效地预测电势、电场强度、磁感应强度等物理量的分布,且预测时间较FEM仿真计算时间大幅缩短。同时,通过合理选择数据集大小,即使在小数据集下也能有较高的预测精度。 展开更多
关键词 电磁场 卷积神经网络 快速计算 有限元法
在线阅读 下载PDF
基于卷积神经网络的夹层玻璃开裂后拉伸性能快速评估方法
14
作者 尹俊熙 彭沈楠 +1 位作者 王星尔 杨健 《硅酸盐通报》 CAS 北大核心 2024年第12期4588-4596,共9页
夹层玻璃开裂后的承载性能对持续风灾或爆炸时建筑玻璃结构安全性非常重要。玻璃裂纹形态作为开裂后性能的关键影响因素,对夹层玻璃的拉伸硬化效应和局部失效触发有着重要作用。对采用离子性中间层(SG)的钢化夹层玻璃进行碎裂试验及碎... 夹层玻璃开裂后的承载性能对持续风灾或爆炸时建筑玻璃结构安全性非常重要。玻璃裂纹形态作为开裂后性能的关键影响因素,对夹层玻璃的拉伸硬化效应和局部失效触发有着重要作用。对采用离子性中间层(SG)的钢化夹层玻璃进行碎裂试验及碎裂后单轴拉伸试验,获取图形和力学性能的试验数据集,并和精细有限元模型校核,确定裂纹形态对应的碎片密度、最小最近邻距离、有效粘结系数等关键参数。随后,建立由表面应力调控裂纹形态的夹层玻璃开裂后有限元模型批量化生成方法,基于维诺(Voronoi)形态近似来扩充模拟数据集。采用卷积神经网络方法,基于裂纹形态图像识别训练,得到具有良好精度的夹层玻璃开裂后等效拉伸性能快速评估方法。 展开更多
关键词 夹层玻璃 SG中间层 开裂后性能 裂纹形态 快速评估方法 卷积神经网络
在线阅读 下载PDF
一种基于编码单元快速划分的VVC帧内编码方法
15
作者 钟辉 陆宇 +1 位作者 殷海兵 黄晓峰 《电信科学》 北大核心 2024年第8期23-33,共11页
相比于高效视频编码(high efficiency video coding,HEVC)标准,新一代编码标准多功能视频编码(versatile video coding,VVC)引入了很多新的技术,其中包括四叉树(quadtree,QT)和多类型树(multi-type tree,MTT)划分,MTT划分由HEVC中的QT... 相比于高效视频编码(high efficiency video coding,HEVC)标准,新一代编码标准多功能视频编码(versatile video coding,VVC)引入了很多新的技术,其中包括四叉树(quadtree,QT)和多类型树(multi-type tree,MTT)划分,MTT划分由HEVC中的QT划分延伸而来。新划分方法提高了压缩效率,但导致编码时间急剧增加。为了降低编码复杂度,提出了一种结合深度学习方法和MTT方向早期判决的快速帧内编码算法。首先使用轻量级的卷积神经网络(convolutional neural network,CNN)对QT和部分MTT进行预测划分,其余MTT则采用提前预测MTT划分方向的方法作进一步的优化。实验结果表明,所提方法能够大幅降低编码复杂度,相比于原始编码器的编码时间减少了74.3%,且只有3.3%的码率损失,性能优于对比的方法。 展开更多
关键词 VVC 帧内编码 卷积神经网络 快速编码 四叉树 多类型树
在线阅读 下载PDF
FPGA平台上动态硬件重构的Winograd神经网络加速器 被引量:1
16
作者 梅冰笑 滕文彬 +3 位作者 张弛 王文浩 李富强 苑福利 《计算机工程与应用》 CSCD 北大核心 2024年第22期323-334,共12页
为解决卷积神经网络在FPGA平台上进行硬件加速时存在的资源利用率低和资源受限问题,提出了一种基于FPGA动态部分重构技术和Winograd快速卷积的卷积神经网络加速器。该加速器通过运行时硬件重构对FPGA片上资源进行时分复用,采用流水线方... 为解决卷积神经网络在FPGA平台上进行硬件加速时存在的资源利用率低和资源受限问题,提出了一种基于FPGA动态部分重构技术和Winograd快速卷积的卷积神经网络加速器。该加速器通过运行时硬件重构对FPGA片上资源进行时分复用,采用流水线方式动态地将各个计算流水段配置到FPGA,各个流水段所对应的卷积计算核心使用Winograd算法进行定制优化,以在解决资源受限问题的同时最大程度地提升计算资源利用效率。针对该加速器架构,进一步构建了组合优化模型,用于搜索在特定FPGA硬件平台上部署特定网络模型的最优并行策略,并使用遗传算法进行设计空间求解。基于Xilinx VC709 FPGA平台对VGG-16网络模型进行部署和分析,综合仿真结果表明,所提出的设计方法能够在资源有限的FPGA上自适应地实现大型神经网络模型,加速器整体性能可以达到1078.3 GOPS,较以往加速器的性能和计算资源利用效率可以分别提升2.2倍和3.62倍。 展开更多
关键词 卷积神经网络 动态部分硬件重构 现场可编程门阵列(FPGA) 硬件加速器 Winograd快速卷积
在线阅读 下载PDF
基于CNN的高速铁路侵限异物特征快速提取算法 被引量:39
17
作者 王洋 余祖俊 +1 位作者 朱力强 郭保青 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第5期1267-1275,共9页
高速铁路异物侵限检测系统用来检测是否有异物侵入高速铁路安全限界。为增加系统的可靠性,提出了一种基于卷积神经网络(CNN)的特征快速提取算法。针对特征计算速度缓慢的问题,提出简化的全连接网络结构;针对准确率因简化网络结构而下降... 高速铁路异物侵限检测系统用来检测是否有异物侵入高速铁路安全限界。为增加系统的可靠性,提出了一种基于卷积神经网络(CNN)的特征快速提取算法。针对特征计算速度缓慢的问题,提出简化的全连接网络结构;针对准确率因简化网络结构而下降的问题,提出将卷积层的卷积核进行预先训练;最后为防止因全连接而导致的对称性特征提取,提出加入稀疏性参数的快速特征提取算法。改进后的卷积神经网络,在保证准确率的基础上加快了计算速度,同时满足了实时性和高准确率的要求。实验表明处理单幅图像的速度为0.15 s,准确率为99.5%。 展开更多
关键词 异物识别 卷积神经网络 预先训练卷积核 快速特征提取 稀疏编码
在线阅读 下载PDF
面向快速频率响应系统的网络攻击防御控制策略 被引量:17
18
作者 孙凯祺 邱伟 +2 位作者 李可军 姚文轩 刘奕路 《中国电机工程学报》 EI CSCD 北大核心 2021年第16期5476-5485,共10页
针对广域测量系统中的测量数据受到攻击时,快速频率响应(fast frequency response,FFR)控制系统被欺骗而生成错误控制命令进而危害电网安全的问题,该文提出一种面向虚假数据注入攻击的新型FFR网络安全防御控制策略。该策略首先利用连续... 针对广域测量系统中的测量数据受到攻击时,快速频率响应(fast frequency response,FFR)控制系统被欺骗而生成错误控制命令进而危害电网安全的问题,该文提出一种面向虚假数据注入攻击的新型FFR网络安全防御控制策略。该策略首先利用连续小波变换对被攻击数据进行时频分析,再提出一种攻击重组卷积神经网络用于虚假数据检测。针对被判别为被攻击的测量值,基于提出的新型网络攻击防御控制,以迅速恢复FFR的误响应量,减少FFR误动作造成的影响;若测量数据正常,则结合FFR快速响应恢复控制策略以恢复FFR响应速率,保持FFR的快速响应特性。基于实测频率数据与PSCAD环境的仿真实验表明,所提出的策略可以迅速检测网络攻击,并实时调节FFR输出,提高系统在网络攻击下的运行稳定性。 展开更多
关键词 广域测量系统 快速频率响应 攻击重组卷积神经网络 网络攻击防御控制
在线阅读 下载PDF
基于分裂基-2/(2a)FFT算法的卷积神经网络加速性能的研究 被引量:10
19
作者 伍家松 达臻 +2 位作者 魏黎明 SENHADJI Lotfi 舒华忠 《电子与信息学报》 EI CSCD 北大核心 2017年第2期285-292,共8页
卷积神经网络在语音识别和图像识别等众多领域取得了突破性进展,限制其大规模应用的很重要的一个因素就是其计算复杂度,尤其是其中空域线性卷积的计算。利用卷积定理在频域中实现空域线性卷积被认为是一种非常有效的实现方式,该文首先... 卷积神经网络在语音识别和图像识别等众多领域取得了突破性进展,限制其大规模应用的很重要的一个因素就是其计算复杂度,尤其是其中空域线性卷积的计算。利用卷积定理在频域中实现空域线性卷积被认为是一种非常有效的实现方式,该文首先提出一种统一的基于时域抽取方法的分裂基-2/(2a)1维FFT快速算法,其中a为任意自然数,然后在CPU环境下对提出的FFT算法在一类卷积神经网络中的加速性能进行了比较研究。在MNIST手写数字数据库以及Cifar-10对象识别数据集上的实验表明:利用分裂基-2/4 FFT算法和基-2 FFT算法实现的卷积神经网络相比于空域直接实现的卷积神经网络,精度并不会有损失,并且分裂基-2/4能取得最好的提速效果,在以上两个数据集上分别提速38.56%和72.01%。因此,在频域中实现卷积神经网络的线性卷积操作是一种十分有效的实现方式。 展开更多
关键词 信号处理 深度学习 卷积神经网络 快速傅里叶变换
在线阅读 下载PDF
基于快速滤波算法的卷积神经网络加速器设计 被引量:6
20
作者 王巍 周凯利 +2 位作者 王伊昌 王广 袁军 《电子与信息学报》 EI CSCD 北大核心 2019年第11期2578-2584,共7页
为减少卷积神经网络(CNN)的计算量,该文将2维快速滤波算法引入到卷积神经网络,并提出一种在FPGA上实现CNN逐层加速的硬件架构。首先,采用循环变换方法设计行缓存循环控制单元,用于有效地管理不同卷积窗口以及不同层之间的输入特征图数据... 为减少卷积神经网络(CNN)的计算量,该文将2维快速滤波算法引入到卷积神经网络,并提出一种在FPGA上实现CNN逐层加速的硬件架构。首先,采用循环变换方法设计行缓存循环控制单元,用于有效地管理不同卷积窗口以及不同层之间的输入特征图数据,并通过标志信号启动卷积计算加速单元来实现逐层加速;其次,设计了基于4并行快速滤波算法的卷积计算加速单元,该单元采用若干小滤波器组成的复杂度较低的并行滤波结构来实现。利用手写数字集MNIST对所设计的CNN加速器电路进行测试,结果表明:在xilinx kintex7平台上,输入时钟为100 MHz时,电路的计算性能达到了20.49 GOPS,识别率为98.68%。可见通过减少CNN的计算量,能够提高电路的计算性能。 展开更多
关键词 卷积神经网络 快速滤波算法 FPGA 并行结构
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部