期刊文献+
共找到644篇文章
< 1 2 33 >
每页显示 20 50 100
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
1
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
2
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
在线阅读 下载PDF
快速综合学习粒子群优化算法 被引量:3
3
作者 杨帆 乌景秀 +2 位作者 范子武 李子祥 朱沈涛 《水利水电技术(中英文)》 北大核心 2025年第2期30-44,共15页
【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast C... 【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)。【方法】FCLPSO算法引入粒子学习概率、个体影响概率、群体影响概率三个属性,表征每个粒子个体“与生俱来”的不同学习能力,同时新增强化学习、粒子重生等策略,提升算法收敛速度以及监测并跳出“伪收敛”状态。选用14个标准测试函数以及6种常用粒子群变体算法开展FCLPSO算法性能分析。【结果】结果显示:在收敛性方面,FCLPSO算法平均排名为1.86,排名第一次数为7次、排名第二的次数为2次、排名最后次数为0,最终综合排名第一;在鲁棒性方面,FCLPSO算法成功率排名第一,平均值为94.3%,14个测试函数中最低成功率为73.3%;达到阈值所需适应度评价次数最少,平均值40817,较其他算法评价次数少一半。【结论】结果表明:FCLPSO算法在收敛精度、收敛速度和鲁棒性方面排名综合第一,对复杂多峰问题求解更具优势,可为工程应用中复杂优化问题求解提供重要手段。 展开更多
关键词 粒子群优化算法 强化学习 粒子属性 粒子重生 过早收敛 影响因素 人工智能 全局搜索
在线阅读 下载PDF
基于特征筛选和粒子群优化的花生生物量估算 被引量:2
4
作者 刘涛 杨奉源 +4 位作者 刘望 张寰 殷冬梅 张全国 焦有宙 《农业工程学报》 北大核心 2025年第1期238-247,共10页
为解决花生植株生物量估算精度低、破坏性大等问题,该研究提出一种无人机低空遥感技术结合高光谱特征筛选的花生生物量估算方法。通过无人机搭载高光谱成像仪,获取田块尺度多个花生品种的高光谱影像数据,首先对获取的影像进行拼接、辐... 为解决花生植株生物量估算精度低、破坏性大等问题,该研究提出一种无人机低空遥感技术结合高光谱特征筛选的花生生物量估算方法。通过无人机搭载高光谱成像仪,获取田块尺度多个花生品种的高光谱影像数据,首先对获取的影像进行拼接、辐射定标、大气校正等预处理,提取出地面采样点位置的光谱反射率,计算光谱反射率的一阶微分和植被指数,使用变量投影重要性(variable importance in projection,VIP)方法对光谱反射率、一阶微分和植被指数等三种数据进行特征筛选,利用筛选后的特征和地面实测数据构建支持向量机回归(support vector regression,SVR)、反向传播神经网络回归(back propagation neural network,BPNN)和随机森林回归(random forest regression,RFR)模型,并使用粒子群优化算法(particle swarm optimization,PSO)进行模型优化。结果表明:相比原始光谱反射率和植被指数,一阶微分光谱反射率与花生生物量具有较好的相关性;使用一阶微分光谱反射率与植被指数组合的RF回归模型精度最高(决定系数R^(2)为0.754,均方根误差RMSE为0.085 kg/m^(2)),使用粒子群优化后的PSO-RF模型可进一步提高模型精度(R^(2)为0.80,RMSE为0.076 kg/m^(2))。该研究为花生生物量精准估算提供了有效的方法,为智慧乡村建设中的精细化农田管理提供技术支持。 展开更多
关键词 花生 生物量 智慧乡村 特征筛选 机器学习 粒子群优化
在线阅读 下载PDF
基于粒子群优化后随机森林模型的管道内腐蚀风险预测 被引量:2
5
作者 肖雯雯 葛鹏莉 +6 位作者 胡广强 吕瑶 龙武 刘青山 郜双武 曲志豪 张雷 《腐蚀与防护》 北大核心 2025年第2期59-65,共7页
基于塔河油田历史失效数据,使用Pearson相关性分析和灰色关联度分析确定管道内腐蚀主控因素,并将其作为模型输入变量,腐蚀速率作为输出变量,建立随机森林(RF)腐蚀预测模型。为提高预测精度,使用粒子群优化(PSO)算法对RF模型的超参数进... 基于塔河油田历史失效数据,使用Pearson相关性分析和灰色关联度分析确定管道内腐蚀主控因素,并将其作为模型输入变量,腐蚀速率作为输出变量,建立随机森林(RF)腐蚀预测模型。为提高预测精度,使用粒子群优化(PSO)算法对RF模型的超参数进行优化。结果表明:塔河油田输油管道内腐蚀主控因素为CO_(2)分压、温度、Cl^(-)含量和H_(2)S分压;经PSO优化后RF模型的决定系数R~2为0.97,均方根误差为0.161,平均绝对误差为0.027,均优于其他3种模型。因此,PSO优化后RF模型能够准确预测管道的腐蚀速率,为油气田管道的腐蚀预警和防护提供依据和支持。 展开更多
关键词 CO_(2)-H_(2)S腐蚀 机器学习 随机森林(RF) 粒子群优化(PSO) 腐蚀速率
在线阅读 下载PDF
交叉筛透筛率影响因素及其智能预测模型
6
作者 赵啦啦 徐峰 +4 位作者 段晨龙 郭辰昊 汪维 江海深 乔金鹏 《煤炭学报》 北大核心 2025年第7期3617-3628,共12页
湿黏细粒原煤的干法深度筛分是实现煤炭高效洁净利用的关键技术之一。交叉式细粒滚轴筛(交叉筛)是一种新型干法深度筛分设备,有效解决了传统干法筛分设备易出现“筛面堵孔”等问题。针对筛分过程的数学模型和DEM(Discrete Element Meth... 湿黏细粒原煤的干法深度筛分是实现煤炭高效洁净利用的关键技术之一。交叉式细粒滚轴筛(交叉筛)是一种新型干法深度筛分设备,有效解决了传统干法筛分设备易出现“筛面堵孔”等问题。针对筛分过程的数学模型和DEM(Discrete Element Method)模型均存在难以准确预测实际筛分性能的问题,基于机器学习方法对交叉筛的透筛率智能预测模型进行了研究。利用斯皮尔曼相关系数矩阵热力图分析了给料率、外水含量、筛面倾角和筛轴转速4个特征变量与透筛率之间及各特征之间的相关性,分别基于线性回归(Linear Regression,LR)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)算法建立了4种交叉筛透筛率智能预测模型,并结合粒子群算法(Particle Swarm Optimization,PSO)对支持向量机、决策树及随机森林3种模型进行超参数组合优化,得到模型的最佳参数组合并提高了模型的预测性能和泛化能力。利用拟合决定系数R2(Coefficient of Determination)、均方误差EMS(Mean Square Error)和平均绝对误差EMA(Mean Absolute Error)3个评价指标,比较了各模型的预测性能。其中,PSO-SVM预测模型性能最好,对数据的拟合能力最强,其评价指标R^(2)达到了0.976 1,且预测的结果与实际值的误差最小,相应的评价指标EMS和EMA分别为3.110×10^(-4)和1.353×10^(-2)。LR模型的预测性能最差,其评价指标R^(2)仅为0.722 2,且预测的结果与实际值的误差最大,EMS和EMA分别为1.320×10^(-3)和3.137×10^(-2)。此外,相比于LR模型,添加L_(1)和L_(2)正则化获得的模型预测准确率分别提高了20.26%和4.43%。研究结果为建立交叉筛的透筛率机器学习智能预测模型提供了参考,为分析交叉筛的特征变量对透筛率的影响机理提供了新方法,为实现交叉筛的智能化控制及结构优化提供了理论依据。 展开更多
关键词 交叉筛 透筛率 机器学习 预测模型 粒子群算法
在线阅读 下载PDF
有色金属行业碳排放情景预测研究——以陕西省为例
7
作者 杨玮 张林怡 +3 位作者 龙涛 邓莎 杨超 雷永康 《安全与环境学报》 北大核心 2025年第7期2858-2866,共9页
科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属... 科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属行业碳排放的主要影响因素,并通过构建粒子群算法(Particle Swarm Optimization, PSO)优化的深度极限学习机(Deep Extreme Learning Machine, DELM)模型对陕西省有色金属行业2022—2035年的碳排放进行情景预测。结果显示:省经济增速、能源消费总量、能源强度等6个因素是影响陕西省有色金属行业碳排放的主要因素;PSO-DELM模型的预测精度比DELM模型更高,其决定系数、平均绝对百分比误差、平均绝对误差和均方根误差分别为0.99、0.36%、0.02和0.03。情景预测结果表明,在低碳、基准和高碳情景下,陕西省有色金属行业碳排放将分别于2028年、2032年和2034年达峰,峰值分别为280.05万t、432.05万t和616.23万t。 展开更多
关键词 环境工程学 Lasso回归 深度极限学习机 粒子群优化算法 碳排放 情景预测
在线阅读 下载PDF
基于PSO-ELM的不同温湿度条件下叶丝干燥入口水分控制研究
8
作者 李自娟 李宜馨 +7 位作者 吕萱 赵海洋 孙朔 冯子贤 高杨 赵力源 呼守宇 陈娇娇 《中国烟草学报》 北大核心 2025年第3期60-69,共10页
【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下... 【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下叶丝干燥入口水分分类模型,并根据分类模型选取最佳工艺参数。【结果】(1)全年可分为4、5月为中温低湿,6、7、8月为高温高湿,9、10月为中温中湿,其它为低温中湿4个区间,且不同温湿度区间下叶丝干燥入口水分存在显著差异;(2)不同温湿度区间下叶丝干燥入口水分离散化处理后分为劣品质(其它)、中等品质(水分偏低μ-1.5σ~μ-0.5σ)、高品质(μ-0.5σ~μ+0.5σ)和中等品质(水分偏高μ+0.5σ~μ+1.5σ)4个品质类别;(3)不同温湿度区间干燥入口水分分类模型PSO-ELM效果均优于GS-SVM和GS-RF,其各温湿度区间的准确率、精确度和召回率均在90%以上,F1分数均在0.90以上;(4)PSO-ELM模型选取出最大化高品质入口水分的工艺参数运用于实际生产后,不同温湿度条件下的叶丝干燥入口水分标准差均降低了40%~50%,高品质入口水分的占比显著增高,其中中温低湿和低温中湿区的占比分别增加了38.9%和60%。 展开更多
关键词 叶丝干燥 温湿度 粒子群 极限学习机
在线阅读 下载PDF
基于MDEPSO算法的无人机三维航迹规划
9
作者 肖鹏 于海霞 +1 位作者 黄龙 张司明 《兵工学报》 北大核心 2025年第7期214-226,共13页
针对经典粒子群算法在无人机三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法。算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;... 针对经典粒子群算法在无人机三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法。算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;其次依靠动态约束方程实现学习因子增强,促使粒子间信息共享更为高效,改善算法自学习能力;随后有序融合混沌初始化和精英反向学习进化等策略优势,重新规划粒子群进化流程,增强粒子在迭代过程中的均衡性和多样性,提升算法收敛精度。实验中通过测试函数横向对比和复杂三维任务场景纵向应用,多维增强粒子群优化算法在新的多维目标函数指标中相较于经典粒子群算法无人机航迹规划能力获得了提升,在5种比对算法中表现出较好的有效性和竞争力。 展开更多
关键词 无人机 航迹规划 粒子群算法 混沌 精英反向学习策略
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
10
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于深度学习的运动分析数字孪生系统 被引量:1
11
作者 黄欢 邱涛 +2 位作者 甄庆凯 陈骐 王勇 《中国体育科技》 北大核心 2025年第3期44-54,共11页
运动分析技术被广泛应用于体育科学、康复医学和人体工程学等领域。然而,为了保证动作数据的完整性,传统的动作捕捉系统需要手动调整相机布局或增加相机数量以确保场地覆盖,导致成本较高。此外,在使用测力板时,每次实验仅能获得特定受... 运动分析技术被广泛应用于体育科学、康复医学和人体工程学等领域。然而,为了保证动作数据的完整性,传统的动作捕捉系统需要手动调整相机布局或增加相机数量以确保场地覆盖,导致成本较高。此外,在使用测力板时,每次实验仅能获得特定受测者的力学数据,而对于不同身高和体重的受测者,该数据无法重复利用。针对上述问题,研究设计了一个基于深度学习的运动分析数字孪生系统。该系统不仅能够模拟动作捕捉环境,优化相机姿态,还能计算复杂动作下人体与环境的接触力。该系统利用变分自编码器和强化学习,通过有限的动作片段生成连续动作序列点云;使用粒子群算法优化相机姿态,实现对动作序列点云的最佳覆盖;在仿真环境中,采用生成对抗模拟学习方法训练人形机器人完成各种动作,进而计算地面接触力,并与测力板的实测数据进行对比,以验证其精度。研究结果显示,粒子群算法能够极大提高相机对动作点云的覆盖率;在双足行走场景下,仿真接触力与实测数据相比误差小于10%。运动分析数字孪生系统可以在仿真环境中生成不同参数下的人体动作,无需依赖测力板,即可为生物力学分析提供约束力,具有广泛的应用前景。 展开更多
关键词 运动分析 数字孪生 变分自编码器 强化学习 粒子群算法
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价 被引量:2
12
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子群优化算法(PSO) 极限学习机(ELM) 水质评价
在线阅读 下载PDF
基于机器学习与粒子群算法的LBM多相流模型优化 被引量:1
13
作者 侯亚祺 张玮 +2 位作者 张鸿 高飞雨 胡嘉华 《化工学报》 北大核心 2025年第3期1120-1132,共13页
在利用格子Boltzmann方法(LBM)模拟低毛细数的弹状流流动时,由于气泡发展过程复杂,模型控制参数选择难度大,当所选参数不当时,会产生错误的非物理现象,从而降低计算精度。通过机器学习建立LBM多相流过程模型,采用粒子群算法优化机器学... 在利用格子Boltzmann方法(LBM)模拟低毛细数的弹状流流动时,由于气泡发展过程复杂,模型控制参数选择难度大,当所选参数不当时,会产生错误的非物理现象,从而降低计算精度。通过机器学习建立LBM多相流过程模型,采用粒子群算法优化机器学习模型的超参数,进一步优化LBM建模过程中的控制参数,建立了LBM-机器学习-粒子群算法耦合多相流数值模拟模型。基于该模型研究了T型微通道内弹状流流动参数对气泡演化过程稳定性的影响。模拟结果表明,所建LBM多相流模型能预测复杂条件下气泡伸长率,在此基础上通过伸长率分析找到了最优气液两相进口流速关系,有效解决了低毛细数下弹状流流动不稳定性问题,显著提高了模拟计算精度与计算效率。 展开更多
关键词 格子Boltzmann法 微通道弹状流 机器学习 粒子群算法 模型优化
在线阅读 下载PDF
基于K-medoids-GBDT-PSO-LSTM组合模型的短期光伏功率预测 被引量:1
14
作者 戴朝辉 陈昊 +3 位作者 刘莘轶 夏长青 郭嘉毅 于立军 《太阳能学报》 北大核心 2025年第1期654-661,共8页
为保障电网供需平衡和安全稳定运行,提高大型光伏电站功率预测的精度,提出一种基于K中心点聚类算法(K-medoids)、梯度提升树(GBDT)和粒子群优化算法(PSO)组合优化的长短期记忆神经网络(LSTM)的光伏功率短期预测模型。首先,采用K-medoid... 为保障电网供需平衡和安全稳定运行,提高大型光伏电站功率预测的精度,提出一种基于K中心点聚类算法(K-medoids)、梯度提升树(GBDT)和粒子群优化算法(PSO)组合优化的长短期记忆神经网络(LSTM)的光伏功率短期预测模型。首先,采用K-medoids聚类算法对大规模光伏发电数据样本中的天气数据进行不同类别聚类,分为晴天、阴天和雨/雪天3种天气类型;然后,在已有数据基础上构造特征工程,使用GBDT算法分别进行特征重要性分析,筛选出对光伏功率预测具有显著影响的特征,并构建合适大小结构的优化数据集;最后,将重构后的数据集代入PSO算法优化的LSTM模型进行训练,以建立短期预测模型。实验结果表明,该模型拥有更高预测精度,相比单一LSTM模型,在雨/雪天下的RMSE指标降低了12.19%。 展开更多
关键词 光伏发电 功率预测 机器学习 长短期记忆网络 优化算法 粒子群算法
在线阅读 下载PDF
基于FCLPSO的水量水质模型参数反演方法研究
15
作者 朱沈涛 杨帆 +3 位作者 柳杨 范子武 乌景秀 李子祥 《水利水电技术(中英文)》 北大核心 2025年第7期54-66,共13页
【目的】复杂河网水量水质模型中参数多、维数高,模型参数反演难度大,优化目标函数选取、单参数和多参数不同反演方式等对参数反演精度影响需开展深入分析。【方法】提出基于快速综合粒子群优化算法(Fast Comprehensive Learning Partic... 【目的】复杂河网水量水质模型中参数多、维数高,模型参数反演难度大,优化目标函数选取、单参数和多参数不同反演方式等对参数反演精度影响需开展深入分析。【方法】提出基于快速综合粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)的水量水质模型参数反演方法,设计参数反演数值试验,采用LH-OAT全局敏感性分析方法对7种模型性能评价指标进行目标函数优选,并分析模型单参数和多参数反演结果并分析不同反演方式的差异性。【结果】结果显示:NSE∗作为目标函数敏感度最高;不同类型参数均具有较高精度,单参数反演平均相对误差(MRE)为5.2%、变差系数(CV)为7.2%,多参数反演结果MRE为13.5%、CV为14%;多参数反演中水动力指标反演结果优于水质指标反演结果,多参数“分层反演”方式优于“同时反演”方式。【结论】结果表明:该模型参数反演方法具有较高的精度,有助于提升复杂河网水量水质模型参数估计时效性与准确性,为复杂河网数值模拟精度的提升提供了技术支撑。 展开更多
关键词 水量水质模型 参数反演 快速综合粒子群优化算法 目标函数 敏感性分析
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络 被引量:1
16
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于数字孪生的变压器热点温度预测预警技术研究 被引量:1
17
作者 李佰霖 马云帆 +3 位作者 陈昱锐 罗远林 褚凡武 付文龙 《工程设计学报》 北大核心 2025年第3期281-295,共15页
变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字... 变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字孪生六维模型,实现了系统数据共通、多源融合和虚实交互等功能。然后,构建可承载人工智能与机器学习算法的感知交互驱动型数字孪生系统,并采用混沌自适应粒子群优化(chaotic adaptive particle swarm optimization,CAPSO)算法对BP(back propagation,反向传播)神经网络的权重和阈值进行优化,加快了原始网络的收敛速度,同时建立了基于CAPSO-BP的变压器热点温度预测模型。最后,利用变压器现场监测数据在虚拟引擎平台上进行仿真分析,实现了变压器热点温度预测预警系统各功能的开发应用并验证了预测模型的可行性和有效性。研究结果为数字孪生变压器系统由数字化向智能化转型提供了新的思路和理论依据。 展开更多
关键词 变压器 数字孪生 人工智能 机器学习 混沌自适应粒子群优化 反向传播神经网络 温度预测
在线阅读 下载PDF
基于PSO-WELM的不平衡OAM识别模型研究
18
作者 梁瑞悦 于海洋 +3 位作者 陈纯毅 倪小龙 胡小娟 李延风 《光通信技术》 北大核心 2025年第3期67-72,共6页
针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量... 针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量机(SVM)、深度学习(DL)、反向传播人工神经网络(BP-ANN)模型的性能。实验结果表明:PSO-WELM模型在较弱湍流强度下能够完全正确识别少数类、多数类OAM光束;在中等湍流强度下,PSO-WELM模型的各项评价指标值均优于对比方法,证明了该模型在识别不平衡状态OAM光束方面具有可行性和有效性。 展开更多
关键词 不平衡数据 轨道角动量 机器学习 粒子群优化算法 极限学习机
在线阅读 下载PDF
基于粗糙超立方的联邦进化特征选择算法
19
作者 陈雪颖 罗川 +1 位作者 李天瑞 陈红梅 《计算机研究与发展》 北大核心 2025年第11期2710-2724,共15页
特征选择是机器学习领域中数据降维的有效手段.在大数据时代,数据安全成为了当今社会中备受关注的问题,如何在隐私保护的前提下完成特征选择任务是亟需解决的一个挑战性科学问题.粗糙超立方是一种结合粗糙集理论和超立方学习的不确定性... 特征选择是机器学习领域中数据降维的有效手段.在大数据时代,数据安全成为了当今社会中备受关注的问题,如何在隐私保护的前提下完成特征选择任务是亟需解决的一个挑战性科学问题.粗糙超立方是一种结合粗糙集理论和超立方学习的不确定性近似计算模型,通过引入有监督的信息粒化技术和多重特征评估准则,为数值型近似分类问题提供了一种高效的特征选择方法.将粗糙集超立方模型和粒子群优化算法相结合,提出了一种新颖的隐私保护下多方参与的联邦特征选择算法.首先,该算法建立了一种适用于多方参与的集中式(客户端/服务器)联邦特征选择架构.在客户端上利用粗糙集超立方模型和粒子群优化算法搜索本地最优特征子集,同时在服务器端给出了一种适应多参与方的全局特征子集评估策略.然后,通过设计联邦环境下的粒子初始化策略提高了算法在多参与方下协同特征选择能力.最后,在12组UCI基准数据集上的实验结果表明,相比于其他6种传统特征选择算法,在满足各参与方数据隐私保护的前提下,算法所选择出的特征子集在各参与方上具有更好的分类性能表现. 展开更多
关键词 特征选择 粗糙超立方 联邦学习 粒子群优化 隐私保护
在线阅读 下载PDF
考虑连铸机柔性检修的炼钢 连铸混合粒子群调度算法
20
作者 李毅仁 王柏琳 +3 位作者 袁帅鹏 张卓伦 李铁克 王阳 《计算机集成制造系统》 北大核心 2025年第9期3296-3307,共12页
连铸工序是炼钢连铸的核心,连铸机检修既是炼钢连铸生产设备可靠性的必要保障,也是影响炼钢连铸生产连续性的重要因素。鉴于此,将连铸机可检修时间为区间值的柔性检修要求引入炼钢连铸调度中,以最小化炉次间等待时间和设备闲置时间为优... 连铸工序是炼钢连铸的核心,连铸机检修既是炼钢连铸生产设备可靠性的必要保障,也是影响炼钢连铸生产连续性的重要因素。鉴于此,将连铸机可检修时间为区间值的柔性检修要求引入炼钢连铸调度中,以最小化炉次间等待时间和设备闲置时间为优化目标,建立了问题的混合整数规划模型,并提出了一种混合粒子群算法。该算法针对粒子群算法在离散问题中容易陷入局部最优的缺点,设计了交叉变异策略和逆向学习策略;为提高迭代效率,设计了对全局最优粒子的模拟退火搜索策略;结合模型中的特殊生产约束和柔性检修约束特征,设计了一种逆序倒推的求解规则。基于实际生产数据进行了对比实验,证明了模型及算法的有效性。 展开更多
关键词 炼钢连铸 生产调度 柔性检修 粒子群算法 逆向学习
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部