In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear...In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.展开更多
A method of high resolution frequency estimation based on a single vector sensor using ESPRIT (Estimating Signal Parameters via Rotational Invariance Techniques) algorithm is proposed and applied to the underwater a...A method of high resolution frequency estimation based on a single vector sensor using ESPRIT (Estimating Signal Parameters via Rotational Invariance Techniques) algorithm is proposed and applied to the underwater acoustic (UWA) communication system of frequency modulation. Higher resolution frequency estimation can be obtained by this algorithm using fewer snapshots comparing with the sound intensity frequency estimation. Results of simulation and lake experiment show that the proposed algorithm can improve the communication data rate and reduce the bandwidth of the system. Because higher signal-to-noise ratio (SNR) is demanded, range UWA communication at oresent. this algorithm can be used in high speed short展开更多
This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeit...This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.展开更多
A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate t...A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.展开更多
The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal cla...The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.展开更多
The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed...The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.展开更多
针对L型阵列在二维波达方向(Direction-of-Arrival,DOA)估计参数,估计过程后期随着信噪比(Signal to Noise Ratio,SNR)的提高测向误差几乎没有变化,维持在0.15°左右,提出了修正F型阵列构型。该阵列在不额外增加阵元数的情况下,充...针对L型阵列在二维波达方向(Direction-of-Arrival,DOA)估计参数,估计过程后期随着信噪比(Signal to Noise Ratio,SNR)的提高测向误差几乎没有变化,维持在0.15°左右,提出了修正F型阵列构型。该阵列在不额外增加阵元数的情况下,充分利用阵元所包含的信号信息使用2次传播算子(Propagation Method,PM)算法对俯仰角和方位角进行2次估计。仿真试验结果表明,修正F型阵列能够实现信号的DOA估计,在高SNR情况下侧向误差减小到0.07°左右,相比均匀L型阵列,该阵列在高SNR情况下估计精度提升了53.3%,在小快拍数情况下成功率也提高了20%,具有稳定、精确的估计精度。展开更多
针对现有波达方向估计(Direction of Arrival, DOA)算法在低信噪比、多信源条件下估计精度不足、效率低等问题,提出了一种基于可分离替代函数算法的矢量水听器阵列多快拍DOA估计方法.首先对空域等角度均匀划分,构造出超完备冗余字典,建...针对现有波达方向估计(Direction of Arrival, DOA)算法在低信噪比、多信源条件下估计精度不足、效率低等问题,提出了一种基于可分离替代函数算法的矢量水听器阵列多快拍DOA估计方法.首先对空域等角度均匀划分,构造出超完备冗余字典,建立信号多快拍数据在空域的稀疏表示模型,然后采用可分离替代函数算法思想解决稀疏重构问题,求解出信号在空域的稀疏系数矩阵,最后将稀疏矩阵中行向量的范数映射到空域网格上,得到DOA估计值.仿真实验表明:该方法在低信噪比、多信源条件下拥有比子空间类算法、贪婪类算法以及现有凸优化类估计算法更高的DOA估计精度和更强的鲁棒性,与同类算法相比执行效率更高.展开更多
Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more d...Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more degrees of freedom(DOFs)and better angle estimation performance.Furthermore,a computationally efficient DOA estimation algorithm is proposed.The discrete Fourier transform(DFT)method is utilized to obtain coarse DOA estimates,and subsequently,fine DOA estimates are achieved by spatial smoothing multiple signals classification(SS-MUSIC)algorithm.Compared to SS-MUSIC algorithm,the proposed algorithm has the same estimation accuracy with lower computational complexity because the coarse DOA estimates enable to shrink the range of angle spectral search.In addition,the estimation of the number of signals is not required in advance by DFT method.Extensive simulation results testify the effectiveness of the proposed algorithm.展开更多
来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜...来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。展开更多
This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) d...This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.展开更多
An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIM...An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.展开更多
A parameter estimation approach of reconnaissance hybrid radar signal combined frequency-shift keying (FSK) and phase-shift keying (PSK) is presented. Firstly, the multi-phase difference is adopted to calculate th...A parameter estimation approach of reconnaissance hybrid radar signal combined frequency-shift keying (FSK) and phase-shift keying (PSK) is presented. Firstly, the multi-phase difference is adopted to calculate the instantaneous frequency (IF) of FSK/PSK, then the frequency points of FSK are estimated from the histogram of IF. The code rate of PSK is extracted from the locations of phase discontinuity. Finally, the multi-phase difference of the square of the received signal is computed to estimate the code rate of FSK. The presented algorithm has higher accuracy of parameter estimation when the signal-to-noise ratio (SNR) is above 11 dB.展开更多
基金supported by the National Natural Science Foundation of China(51877015,U1831117)the Cooperation Agreement Foundation by the Department of Science and Technology of Guizhou Province of China(LH[2017]7320,LH[2017]7321,[2015]7249)+2 种基金the Innovation Group Major Research Program Funded by Guizhou Provincial Education Department(KY[2016]051)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China(KY[2018]075)PhD Research Startup Foundation of Tongren University(trxy DH1710)。
文摘In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.
基金Supported by the Research on the Time Space Signal Processing Technology in the Underwater Acoustic Communication Foundation under Grant No. HEUF04081.
文摘A method of high resolution frequency estimation based on a single vector sensor using ESPRIT (Estimating Signal Parameters via Rotational Invariance Techniques) algorithm is proposed and applied to the underwater acoustic (UWA) communication system of frequency modulation. Higher resolution frequency estimation can be obtained by this algorithm using fewer snapshots comparing with the sound intensity frequency estimation. Results of simulation and lake experiment show that the proposed algorithm can improve the communication data rate and reduce the bandwidth of the system. Because higher signal-to-noise ratio (SNR) is demanded, range UWA communication at oresent. this algorithm can be used in high speed short
文摘This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.
基金Supported by the National Natural Science Foundation of China under Grant No. 60572098.
文摘A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971218,61601167,61371169)。
文摘The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.
基金supported by the Open Research Fund of the State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System(No.CEMEE2019Z0104B)。
文摘The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.
文摘针对L型阵列在二维波达方向(Direction-of-Arrival,DOA)估计参数,估计过程后期随着信噪比(Signal to Noise Ratio,SNR)的提高测向误差几乎没有变化,维持在0.15°左右,提出了修正F型阵列构型。该阵列在不额外增加阵元数的情况下,充分利用阵元所包含的信号信息使用2次传播算子(Propagation Method,PM)算法对俯仰角和方位角进行2次估计。仿真试验结果表明,修正F型阵列能够实现信号的DOA估计,在高SNR情况下侧向误差减小到0.07°左右,相比均匀L型阵列,该阵列在高SNR情况下估计精度提升了53.3%,在小快拍数情况下成功率也提高了20%,具有稳定、精确的估计精度。
文摘针对现有波达方向估计(Direction of Arrival, DOA)算法在低信噪比、多信源条件下估计精度不足、效率低等问题,提出了一种基于可分离替代函数算法的矢量水听器阵列多快拍DOA估计方法.首先对空域等角度均匀划分,构造出超完备冗余字典,建立信号多快拍数据在空域的稀疏表示模型,然后采用可分离替代函数算法思想解决稀疏重构问题,求解出信号在空域的稀疏系数矩阵,最后将稀疏矩阵中行向量的范数映射到空域网格上,得到DOA估计值.仿真实验表明:该方法在低信噪比、多信源条件下拥有比子空间类算法、贪婪类算法以及现有凸优化类估计算法更高的DOA估计精度和更强的鲁棒性,与同类算法相比执行效率更高.
基金supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.SJCX18_0103)Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology (No.KF20181915)
文摘Nested linear array enables to enhance localization resolution and achieve under-determined direction of arrival(DOA)estimation.In this paper,the traditional two-level nested linear array is improved to achieve more degrees of freedom(DOFs)and better angle estimation performance.Furthermore,a computationally efficient DOA estimation algorithm is proposed.The discrete Fourier transform(DFT)method is utilized to obtain coarse DOA estimates,and subsequently,fine DOA estimates are achieved by spatial smoothing multiple signals classification(SS-MUSIC)algorithm.Compared to SS-MUSIC algorithm,the proposed algorithm has the same estimation accuracy with lower computational complexity because the coarse DOA estimates enable to shrink the range of angle spectral search.In addition,the estimation of the number of signals is not required in advance by DFT method.Extensive simulation results testify the effectiveness of the proposed algorithm.
文摘来自人造卫星的信号是射电天文观测面临的主要射频干扰(radio frequency interference,RFI)之一,这些RFI会将天文信号掩埋,为天文信号的搜寻和分析带来困扰。为了缓减卫星对天文观测的影响,我们在之前的工作中为500 m口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)开发了卫星电磁干扰监测软件,主要包括卫星数据库、观测模块和监测模块。近年来随着多个巨型卫星星座的规划发射以及望远镜观测模式的增多,卫星对射电天文观测的影响更为复杂,已有的软件已经不能满足实际的需要。为此,本文在单个卫星干扰分析的基础上提出了卫星星座的干扰评估方法,并对已有监测软件进行了升级,升级后卫星数据库覆盖更多的在轨卫星及星座信息且能够自动化更新,观测模块能够支持更多种观测模式下的卫星过境预测和干扰评估。在实际天文观测中,通过接在FAST接收机上的频谱仪数据对软件的干扰预测结果进行了实验验证,结果证明升级后的软件能够在多种观测模式下预测可能威胁的卫星以及对应的过境时间,为望远镜观测规划的调整、卫星干扰的规避和接收系统的保护提供重要的支撑。
文摘This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.
基金Supported by the National Natural Science Foundation of China(6096200161071088)
文摘An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.
基金supported by the National Defense Preresearch Fund of China under Grant No. 41101030401
文摘A parameter estimation approach of reconnaissance hybrid radar signal combined frequency-shift keying (FSK) and phase-shift keying (PSK) is presented. Firstly, the multi-phase difference is adopted to calculate the instantaneous frequency (IF) of FSK/PSK, then the frequency points of FSK are estimated from the histogram of IF. The code rate of PSK is extracted from the locations of phase discontinuity. Finally, the multi-phase difference of the square of the received signal is computed to estimate the code rate of FSK. The presented algorithm has higher accuracy of parameter estimation when the signal-to-noise ratio (SNR) is above 11 dB.