Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this proble...Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.展开更多
Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and ...Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.展开更多
Understanding the properties of nuclei near the double magic nucleus^(40)Ca is crucial for both nuclear theory and experiments.In this study,Ca isotopes were investigated using an extended pairing-plus-quadrupole mode...Understanding the properties of nuclei near the double magic nucleus^(40)Ca is crucial for both nuclear theory and experiments.In this study,Ca isotopes were investigated using an extended pairing-plus-quadrupole model with monopole corrections.The negative-parity states of^(44)Ca were coupled with the intruder orbital g_(9/2)at 4 MeV.The values of E_(4+)/E_(2+)agree well with experimental trend from^(42)Ca to^(50)Ca,considering monopole effects between νf_(7/2)and νp_(3/2)(νf_(5/2)).This monopole effect,determined from data of^(48)Ca and^(50)Ca,supports the proposed new nuclear magic number N=34 by predicting a high-energy 2^(+)state in^(54)Ca.展开更多
While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer ...While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.展开更多
In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ...In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields.展开更多
Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In thi...Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.展开更多
图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异...图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。展开更多
文摘Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.
基金funded by a Grant-in-Aid for Scientific Research(B)(Japan Society for The Promotion of Science,21H02849)Grant-in-Aid for Scientific Research(C)(Japan Society for The Promotion of Science,23K07013)+2 种基金Grant-in-Aid for Transformative Research Areas(A)(Japan Society for The Promotion of Science,JP21H05173)Grant-in-Aid by the Smoking Research FoundationGrant-in-Aid by the Telecommunications Advancement Foundation.
文摘Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.
基金supported by the National Natural Science Foundation of China(Nos.12175199,U2267205,12475124)the ZSTU intramural grant(22062267-Y)。
文摘Understanding the properties of nuclei near the double magic nucleus^(40)Ca is crucial for both nuclear theory and experiments.In this study,Ca isotopes were investigated using an extended pairing-plus-quadrupole model with monopole corrections.The negative-parity states of^(44)Ca were coupled with the intruder orbital g_(9/2)at 4 MeV.The values of E_(4+)/E_(2+)agree well with experimental trend from^(42)Ca to^(50)Ca,considering monopole effects between νf_(7/2)and νp_(3/2)(νf_(5/2)).This monopole effect,determined from data of^(48)Ca and^(50)Ca,supports the proposed new nuclear magic number N=34 by predicting a high-energy 2^(+)state in^(54)Ca.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1444100)
文摘While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.
基金supported by the National Natural Science Foundation of China under Grant 52325402, 52274057, 52074340 and 51874335the National Key R&D Program of China under Grant 2023YFB4104200+1 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSN111 Project under Grant B08028。
文摘In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974253).
文摘Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.
文摘图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。