Diagenetic traps in conglomerate in nearshore subaqueous fans in the steep slope zones of rift basins have been important exploration targets for subtle reservoirs in eastern China. However, the mechanism of how those...Diagenetic traps in conglomerate in nearshore subaqueous fans in the steep slope zones of rift basins have been important exploration targets for subtle reservoirs in eastern China. However, the mechanism of how those traps were formed is not clear, which inhibits further exploration for this type of reservoir. In order to solve the problem, we take as an example nearshore subaqueous fans in the upper part of the fourth member of the Shahejie Formation (Es4s) on the north slope of the Minfeng Subsag in the Dongying Sag. Combining different research methods, such as core observation, thin section examination, scanning electron microscope (SEM) observation, fluid-inclusion analysis, carbon and oxygen isotope analysis of carbonate cements, and analysis of core properties, we studied the genetic mechanisms of diagenetic traps on the basis of diagenetic environment evolution and diagenetic evolution sequence in different sub/micro-facies. Conglomerate in Es4s in the north Minfeng Subsag experienced several periods of transition between alkaline and acidic environments as "alkaline-acidic-alkaline-acidic-weak alkaline". As a result, dissolution and cementation are also very complex, and the sequence is "early pyrite cementation / siderite cementation / gypsum cementation / calcite and dolomite cementation- feldspar dissolution / quartz overgrowth quartz dissolution / ferroan calcite cementation / ankerite cementation / lime-mud matrix recrystallization / feldspar overgrowth carbonate dissolution / feldspar dissolution / quartz overgrowth / pyrite cementation". The difference in sedimentary characteristics between different sub/micro-facies of nearshore subaqueous fans controls diagenetic characteristics. Inner fan conglomerates mainly experienced compaction and lime-mud matrix recrystallization, with weak dissolution, which led to a reduction in the porosity and permeability crucial to reservoir formation. Lime-mud matrix recrystallization results in a rapid decrease in porosity and permeability in inner fan conglomerates in middle-to-deep layers. Because acid dissolution reworks reservoirs and hydrocarbon filling inhibits cementation, reservoirs far from mudstone layers in middle fan braided channels develop a great number of primary pores and secondary pores, and are good enough to be effective reservoirs of hydrocarbon. With the increase of burial depth, both the decrease of porosity and permeability of inner fan conglomerates and the increase of the physical property difference between inner fans and middle fans enhance the quality of seals in middle-to-deep layers. As a result, inner fan conglomerates can be sealing layers in middle-to-deep buried layers. Reservoirs adjacent to mudstones in middle fan braided channels and reservoirs in middle fan interdistributaries experienced extensive cementation, and tight cemented crusts formed at both the top and bottom of conglomerates, which can then act as cap rocks. In conclusion, diagenetic traps in conglomerates of nearshore subaqueous fans could be developed with inner fan conglomerates as lateral or vertical sealing layers, tight carbonate crusts near mudstone layers in middle fan braided channels as well as lacustrine mudstones as cap rocks, and conglomerates far from mudstone layers in middle fan braided channels as reservoirs. Lime-mud matrix recrystallization of inner fan conglomerates and carbonate cementation of conglomerates adjacent to mudstone layers in middle fan braided channels took place from 32 Ma B.R to 24.6 Ma B.P., thus the formation of diagenetic traps was from 32 Ma B.R to 24.6 Ma B.R and diagenetic traps have a better hydrocarbon sealing ability from 24 Ma B.P.. The sealing ability of inner fans gradually increases with the increase of burial depth and diagenetic traps buried more than 3,200 m have better seals.展开更多
Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production,...Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production,we instituted a research project on the measurement methods of key performance parameters such as wind pressure,amount of ventilation and power. At the end a virtual instrument for mine ventilation fans performance evaluation was developed using a USB interface. The practical performance and analytical results of our experiments show that it is feasible,reliable and effective to use the proposed instrumentation for mine ventilation performance evaluation.展开更多
In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantit...In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantities associated with each fan in the network.Accordingly,each fan in a multiple-fan system has its own mine characteristic curve,or a subsystem curve.Under some consideration,the conventional concept of a mine characteristic curve of a single-fan system can be directly extended to that of a particular fan within a multiple-fan system.In this paper the mutual effect of the fans on each other and their effect on the stability of the ventilation network were investigated by Hardy Cross algorithm combined with a switching-parameters technique.To show the validity and reliability of this algorithm,the stability of the ventilation system of Abu-Tartur Mine(one of the largest underground mine in Egypt)has been studied.展开更多
High-yielding oil wells were recently found in the first member of Paleogene Shahejie Formation,the Binhai area of Qikou Sag,providing an example of medium-and deep-buried high-quality reservoirs in the central part o...High-yielding oil wells were recently found in the first member of Paleogene Shahejie Formation,the Binhai area of Qikou Sag,providing an example of medium-and deep-buried high-quality reservoirs in the central part of a faulted lacustrine basin.By using data of cores,cast thin sections,scanning electron microscope and physical property tests,the sedimentary facies,physical properties and main control factors of the high-quality reservoirs were analyzed.The reservoirs are identified as deposits of slump-type sub-lacustrine fans,which are marked by muddy fragments,slump deformation structure and Bouma sequences in sandstones.They present mostly medium porosity and low permeability,and slightly medium porosity and high permeability.They have primary intergranular pores,intergranular and intragranular dissolution pores in feldspar and detritus grains,and structural microcracks as storage space.The main factors controlling the high quality reservoirs are as follows:(1)Favorable sedimentary microfacies of main and proximal distributary gravity flow channels.The microfacies with coarse sediment were dominated by transportation and deposition of sandy debris flow,and the effect of deposition on reservoir properties decreases with the increase of depth.(2)Medium texture maturity.It is shown by medium-sorted sandstones that were formed by beach bar sediment collapsing and redepositing,and was good for the formation of the primary intergranular pores.(3)High content of intermediate-acid volcanic rock detritus.The reservoir sandstone has high content of detritus of various components,especially intermediate-acid volcanic rock detritus,which is good for the formation of dissolution pores.(4)Organic acid corrosion.It was attributed to hydrocarbon maturity during mesodiagenetic A substage.(5)Early-forming and long lasting overpressure.A large-scale overpressure compartment was caused by under-compaction and hydrocarbon generation pressurization related to thick deep-lacustrine mudstone,and is responsible for the preservation of abundant primary pores.(6)Regional transtensional tectonic action.It resulted in the structural microcracks.展开更多
The concept and characteristics of fluvial fan are elucidated through literature review and case analysis.Firstly,the concept and terminology of fluvial fan are introduced.Secondly,the progress and controversy on the ...The concept and characteristics of fluvial fan are elucidated through literature review and case analysis.Firstly,the concept and terminology of fluvial fan are introduced.Secondly,the progress and controversy on the formation mechanism,analysis methods and sedimentary models of fluvial fan are elaborated,and fluvial fan is compared with alluvial fan,river and lacustrine delta.Finally,ten identification signs of the fluvial fan are proposed.It is found through the study that development and scale of fluvial fan are affected by external factors such as climate,tectonic,provenance and wind field.The facies and lithofacies association inside the fan are controlled by the activity of the internal channel.It is pointed that fluvial fans are widely distributed in the world not only today but also in the geological history.The occurrence of fluvial fan will change the traditional continental deposition system dominated by alluvial fan-river-lacustrine.Meanwhile,the research of fluvial fan will be of great significance in the fields of sedimentology and oil and gas exploration.展开更多
A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in severa...A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.展开更多
Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3...Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
基金co-funded by the National Natural Science Foundation of China (41102058)the National Science and Technology Special Grant (2011ZX05006-003)the Fundamental Research Funds for the Central Universities (12CX04001A)
文摘Diagenetic traps in conglomerate in nearshore subaqueous fans in the steep slope zones of rift basins have been important exploration targets for subtle reservoirs in eastern China. However, the mechanism of how those traps were formed is not clear, which inhibits further exploration for this type of reservoir. In order to solve the problem, we take as an example nearshore subaqueous fans in the upper part of the fourth member of the Shahejie Formation (Es4s) on the north slope of the Minfeng Subsag in the Dongying Sag. Combining different research methods, such as core observation, thin section examination, scanning electron microscope (SEM) observation, fluid-inclusion analysis, carbon and oxygen isotope analysis of carbonate cements, and analysis of core properties, we studied the genetic mechanisms of diagenetic traps on the basis of diagenetic environment evolution and diagenetic evolution sequence in different sub/micro-facies. Conglomerate in Es4s in the north Minfeng Subsag experienced several periods of transition between alkaline and acidic environments as "alkaline-acidic-alkaline-acidic-weak alkaline". As a result, dissolution and cementation are also very complex, and the sequence is "early pyrite cementation / siderite cementation / gypsum cementation / calcite and dolomite cementation- feldspar dissolution / quartz overgrowth quartz dissolution / ferroan calcite cementation / ankerite cementation / lime-mud matrix recrystallization / feldspar overgrowth carbonate dissolution / feldspar dissolution / quartz overgrowth / pyrite cementation". The difference in sedimentary characteristics between different sub/micro-facies of nearshore subaqueous fans controls diagenetic characteristics. Inner fan conglomerates mainly experienced compaction and lime-mud matrix recrystallization, with weak dissolution, which led to a reduction in the porosity and permeability crucial to reservoir formation. Lime-mud matrix recrystallization results in a rapid decrease in porosity and permeability in inner fan conglomerates in middle-to-deep layers. Because acid dissolution reworks reservoirs and hydrocarbon filling inhibits cementation, reservoirs far from mudstone layers in middle fan braided channels develop a great number of primary pores and secondary pores, and are good enough to be effective reservoirs of hydrocarbon. With the increase of burial depth, both the decrease of porosity and permeability of inner fan conglomerates and the increase of the physical property difference between inner fans and middle fans enhance the quality of seals in middle-to-deep layers. As a result, inner fan conglomerates can be sealing layers in middle-to-deep buried layers. Reservoirs adjacent to mudstones in middle fan braided channels and reservoirs in middle fan interdistributaries experienced extensive cementation, and tight cemented crusts formed at both the top and bottom of conglomerates, which can then act as cap rocks. In conclusion, diagenetic traps in conglomerates of nearshore subaqueous fans could be developed with inner fan conglomerates as lateral or vertical sealing layers, tight carbonate crusts near mudstone layers in middle fan braided channels as well as lacustrine mudstones as cap rocks, and conglomerates far from mudstone layers in middle fan braided channels as reservoirs. Lime-mud matrix recrystallization of inner fan conglomerates and carbonate cementation of conglomerates adjacent to mudstone layers in middle fan braided channels took place from 32 Ma B.R to 24.6 Ma B.P., thus the formation of diagenetic traps was from 32 Ma B.R to 24.6 Ma B.R and diagenetic traps have a better hydrocarbon sealing ability from 24 Ma B.P.. The sealing ability of inner fans gradually increases with the increase of burial depth and diagenetic traps buried more than 3,200 m have better seals.
基金Project 2007E237 supported by the Science Fund Program of Shaanxi Province of China
文摘Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production,we instituted a research project on the measurement methods of key performance parameters such as wind pressure,amount of ventilation and power. At the end a virtual instrument for mine ventilation fans performance evaluation was developed using a USB interface. The practical performance and analytical results of our experiments show that it is feasible,reliable and effective to use the proposed instrumentation for mine ventilation performance evaluation.
文摘In large mines,single fan is usually not enough to ventilate all the working areas.Single mine-fan approach cannot be directly applied to multiple-fan networks because the present of multiple pressures and air quantities associated with each fan in the network.Accordingly,each fan in a multiple-fan system has its own mine characteristic curve,or a subsystem curve.Under some consideration,the conventional concept of a mine characteristic curve of a single-fan system can be directly extended to that of a particular fan within a multiple-fan system.In this paper the mutual effect of the fans on each other and their effect on the stability of the ventilation network were investigated by Hardy Cross algorithm combined with a switching-parameters technique.To show the validity and reliability of this algorithm,the stability of the ventilation system of Abu-Tartur Mine(one of the largest underground mine in Egypt)has been studied.
基金Supported by the CNPC Science and Technology Major Project(2018E-11)
文摘High-yielding oil wells were recently found in the first member of Paleogene Shahejie Formation,the Binhai area of Qikou Sag,providing an example of medium-and deep-buried high-quality reservoirs in the central part of a faulted lacustrine basin.By using data of cores,cast thin sections,scanning electron microscope and physical property tests,the sedimentary facies,physical properties and main control factors of the high-quality reservoirs were analyzed.The reservoirs are identified as deposits of slump-type sub-lacustrine fans,which are marked by muddy fragments,slump deformation structure and Bouma sequences in sandstones.They present mostly medium porosity and low permeability,and slightly medium porosity and high permeability.They have primary intergranular pores,intergranular and intragranular dissolution pores in feldspar and detritus grains,and structural microcracks as storage space.The main factors controlling the high quality reservoirs are as follows:(1)Favorable sedimentary microfacies of main and proximal distributary gravity flow channels.The microfacies with coarse sediment were dominated by transportation and deposition of sandy debris flow,and the effect of deposition on reservoir properties decreases with the increase of depth.(2)Medium texture maturity.It is shown by medium-sorted sandstones that were formed by beach bar sediment collapsing and redepositing,and was good for the formation of the primary intergranular pores.(3)High content of intermediate-acid volcanic rock detritus.The reservoir sandstone has high content of detritus of various components,especially intermediate-acid volcanic rock detritus,which is good for the formation of dissolution pores.(4)Organic acid corrosion.It was attributed to hydrocarbon maturity during mesodiagenetic A substage.(5)Early-forming and long lasting overpressure.A large-scale overpressure compartment was caused by under-compaction and hydrocarbon generation pressurization related to thick deep-lacustrine mudstone,and is responsible for the preservation of abundant primary pores.(6)Regional transtensional tectonic action.It resulted in the structural microcracks.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-002)
文摘The concept and characteristics of fluvial fan are elucidated through literature review and case analysis.Firstly,the concept and terminology of fluvial fan are introduced.Secondly,the progress and controversy on the formation mechanism,analysis methods and sedimentary models of fluvial fan are elaborated,and fluvial fan is compared with alluvial fan,river and lacustrine delta.Finally,ten identification signs of the fluvial fan are proposed.It is found through the study that development and scale of fluvial fan are affected by external factors such as climate,tectonic,provenance and wind field.The facies and lithofacies association inside the fan are controlled by the activity of the internal channel.It is pointed that fluvial fans are widely distributed in the world not only today but also in the geological history.The occurrence of fluvial fan will change the traditional continental deposition system dominated by alluvial fan-river-lacustrine.Meanwhile,the research of fluvial fan will be of great significance in the fields of sedimentology and oil and gas exploration.
基金Supported by National Institute for Occupational Safety and Health (NIOSH) of USA(200-2009-30328)
文摘A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.
基金Supported by the National Natural Science Foundation of China (41872113,42172109,42202170)CNPC–China University of Petroleum (Beijing) Strategic Cooperation Science and Technology Project (ZLZX2020-02)。
文摘Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.