BACKGROUND: Ensuring about the patient's safety is the f irst vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conduct...BACKGROUND: Ensuring about the patient's safety is the f irst vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care.METHODS: In this study, in combination(qualitative action research and quantitative crosssectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis(HFMEA). To classify the failure modes from the "nursing errors in clinical management model(NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics(total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used.RESULTS: In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identifi ed by HFMEA. 25(11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors(54.7%) and knowledge and skill(9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy.CONCLUSION: "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team communication" and "preventive management of equipment's" were on the agenda as the guidelines.展开更多
Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support ...Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.展开更多
A wood-based X-type lattice sandwich structure was manufactured by insertion-glue method.The birch was used as core,and Oriented Strand Board was used as panel of the sandwich structure.The short beam shear properties...A wood-based X-type lattice sandwich structure was manufactured by insertion-glue method.The birch was used as core,and Oriented Strand Board was used as panel of the sandwich structure.The short beam shear properties and the failure modes of the wood-based X-type lattice sandwich structure with different core direction(vertical and parallel),unit specification(120 mm×60 mm and 60 mm×60 mm),core size(50 mm and 60 mm),and drilling depth(9 mm and 12 mm)were investigated by a short beam shear test and the establishment of a theoretical model to study the equivalent shear modulus and deflection response of the X-type lattice sandwich structure.Results from the short beam shear test and the theoretical model showed that the failure modes of the wood-based X-type lattice sandwich structure were mainly the wrinkling and crushing of the panels under three-point bending load.The experimental values of deflection response of various type specimens were higher than the theoretical values of them.For the core direction of parallel,the smaller the unit specification is,the shorter the core size is,and the deeper the drilling depth is,the greater the short beam shear properties of the wood-based X-type lattice sandwich structure is.展开更多
To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads wer...To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads were studied through simulation, test and analytic methods. Based on published papers, the dimensionless values of limit loads for different failure modes were modified according to real test condition. The load-deformation relation from the analytical formulae was compared with that from experimental and numerical results. A mechanism map was provided to reveal the dependence of the dominant collapse mechanism upon the geometry parameters of the face and the core. The results show that the prediction accuracy was high only if the face thickness was much smaller than the core thickness.展开更多
Functional failure mode of commercial deep sub-micron static random access memory(SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize th...Functional failure mode of commercial deep sub-micron static random access memory(SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result.展开更多
The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field.Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed.Dif...The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field.Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed.Different forms of failure characteristics occur in the roadway.In order to study the failure mechanism with different spatial characteristics,rock-like material specimens with holes in 9 different horizontal and vertical angles were designed.The true triaxial test system was used to carry out the test with the same loading path.The results show that the horizontal angle a and vertical angle β have a significant effect on the specimen strength,specimen rupture angle,and the form of spalling failure in the hole.The spatial angle leads to the formation of asymmetric heterotype V-notches in both sides within the hole.The asymmetry is evident in both the depth and extent of spalling.The strength of the specimen increases and then decreases with increasing vertical angle β.The rupture angle increases and then decreases with increasing horizontal angle a and increases with the increase of the vertical angle β.The stress analytical model of the specimen under three-dimensional compression was established.The distribution of principal stresses around the holes was theoretically analyzed.It is found that the presence of spatial angle changes the distribution of principal stresses around the hole from symmetric to asymmetric distribution.The shift of the principal stresses is responsible for the change from a V-notch to a heterotype V-notch.展开更多
A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial d...A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial dynamic compressive loads were experimentally and numerically investigated.The experiments were conducted using a split Hopkinson pressure bar(SHPB)system.The results indicated that the typical failure of coal is lateral and axial at lower loading rates and totally smashed at higher loading rates.The further fractography analysis of lateral and axial fracture fragments indicated that the coal failure under dynamic compressive load is caused by tensile brittle fracture.In addition,the typical failure modes of coal under dynamic load were numerically reproduced.The numerical results indicated that the axial fracture is caused directly by the incident compressive stress wave and the lateral fracture is caused by the tensile stress wave reflected from the interface between coal specimen and transmitted bar.Potential application was further conducted to interpret dynamic problems in underground coal mine and it manifested that the lateral and axial fractures of coal constitute the parallel cracks in the coal mass under roof fall and blasting in mining space.展开更多
The strength and failure characteristics of most natural rock mass are influenced by discontinues such as fissures, joints, and weak surfaces. In the present study, the strength and failure behavior of ubiquitous- joi...The strength and failure characteristics of most natural rock mass are influenced by discontinues such as fissures, joints, and weak surfaces. In the present study, the strength and failure behavior of ubiquitous- joint rock-l!ke specimens under uniaxial loading have been investigated by DIC (digital image correlation) and discrete element numerical method (PFC2D). The results are obtained. Firstly, the UCSJ of spec- imens with γ= 15° or 30° shows similar tendency while α goes from 0° to 75°. With γ= 45° or 60°, the UCSJ of specimens increases when α goes from 0° to 30° and decreases after α goes beyond 30°. With γ=75°, the peak UCSJ value is reached when α=0°. The UCSJ value shows an increasing trend when α goes from 60° to 75°. Secondly, the ubiquitous-joint specimens present different failure modes for various levels of α and γ(β-α). Based on the experimental results, the failure mode of ubiquitous-joint specimens can be classified into three categories: stepped path failure, failure through parallel plane, and failure through cross plane.展开更多
In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution ...In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution of AE parameters in the rock failure process and fracture fractal dimension characteristics after failure were analyzed.The results revealed that the activity of the AE signal is strongly related toσ3.The evolution of the Ib value can be divided into the I-fluctuation,II-stability,and III-decrease stages.In the first stage,the Ib value of the AE was relatively high,and the AE energy was low.Then,the Ib value tended to be stable;however,the fluctuation amplitude decreased,and the AE energy rapidly increased.In the stage of decrease,the AE energy sharply increased before the load approached the peak value,and the Ib value significantly decreased and dropped to the lowest point before the peak value.Asσ3 increased,the rock’s failure mode changed from tensile failure to shear failure and became more coordinated.As the confining pressure increased,the shape dimension decreased,and the order degree of rock failure increased.The confining pressure exerted a certain control effect on the rock failure.展开更多
In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the s...In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5°around the major axis,the stress deviation rate is-92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1°around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.展开更多
Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we perform...Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we performed triaxial compression tests on different glutenites.The results indicate that failure modes of glutenite are complex due to the existence of gravel.Under different confining pressures,three failure modes were observed.The first failure mode,a tensile failure under uniaxial compression,produces multiple tortuous longitudinal cracks.In this failure mode,the interaction between gravels provides the lateral tensile stress for rock splitting.The second failure mode occurs under low and medium confining pressure and produces a crack band composed of micro-cracks around gravels.This failure mode conforms to the Mohr-Coulomb criterion and is generated by shear failure.In this failure mode,shear dilatancy and shear compaction may occur under different confining pressures to produce different crack band types.In the second failure mode,gravel-induced stress concentration produces masses of initial micro-cracks for shear cracking,and gravels deflect the fracture surfaces.As a result,the fracture is characterized by crack bands that are far broader than in fine-grained rocks.The third failure mode requires high confining pressure and produces disconnected cracks around gravels without apparent crack bands.In this failure mode,the gravel rarely breaks,indicating that the formation of these fractures is related to the deformation of the matrix.The third failure mode requires lower confining pressure in glutenite with weak cement and matrix support.Generally,unlike fine-grained rocks,the failure mode of glutenite is not only controlled by confining pressure but also by the gravel.The failure of glutenite is characterized by producing cracks around gravels.These cracks are produced by different mechanisms and distributed in different manners under different confining pressures to form different fracture patterns.Therefore,understanding the rock microstructure and formation stress state is essential in guiding glutenite reservoir development.展开更多
In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional l...In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure...PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.展开更多
Landslides are one of the key problems for stability analysis of pipelines in the western region of China where the geological conditions are extremely complicated. In order to offer a theoretical basis for the pipe-s...Landslides are one of the key problems for stability analysis of pipelines in the western region of China where the geological conditions are extremely complicated. In order to offer a theoretical basis for the pipe-soil interaction, the general finite element program ABAQUS is used to analyze the distribution of pipe strain caused by landslide through which the pipeline passes. In this paper the Ramberg-Osgood constitutive equation is used to study the strain-based mechanical characteristics of pipelines. Different calculation schemas are designed by considering the change of spatial relationship between pipeline and landslide, and the change of D/t, diameter-thickness ratio of pipeline. The results indicate that the pipeline is primarily subjected to tension stress when the landslide crosses the pipeline perpendicularly, the pipe strain is a maximum along the central axis of the landslide, and reverse bending occurs on pipeline at both edges of the landslide. The pipeline is primarily subjected to friction force caused by the downward movement of the landslide, and the friction force is relatively small when the landslide is parallel to the pipeline. The pipe strain is in proportional to D/t, and this means decreasing D/t can help to improve security of pipelines subjected to the landslide.展开更多
The uniaxial compression experiments on the sandstone samples containing double fissures and a single circular hole were carried out by using electro-hydraulic servo universal testing machine to investigate the effect...The uniaxial compression experiments on the sandstone samples containing double fissures and a single circular hole were carried out by using electro-hydraulic servo universal testing machine to investigate the effect of rock bridge angle β and fissure angle α on mechanical properties and evolution characteristics of cracks.The results show that the peak strength,peak strain and elastic modulus of defected specimens decrease comparing with those for intact sample,and show a decreased trend firstly and then increase with β changing from 0° to 90°.The peak strength and elastic modulus achieve the minimum value as the rock bridge angle is 60°,while the peak strain reaches the minimum value with the rock bridge angle of 45°.The crack initiation of tested rock samples occurs firstly in stress concentration areas at tips of prefabricated fissures under uniaxial compression,and then propagates constantly and coalescences with the prefabricated hole.Some secondary cracks initiate and propagate as well until buckling failure happens.The rock bridge angle has a great influence on crack initiation,coalescence,final failure mode,crack initiation stress and transfixion stress.The peak strength varies significantly,while the elastic modulus and peak strain change slightly,and the failure modes are also different due to the influence of fissure angle.展开更多
Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal ...Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks.展开更多
As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law a...As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law and mechanism regarding the influence of the confining pressure constraints on 3D morphological features of natural fractures.First,fracture surfaces were obtained by true triaxial compression test and 3D laser scanning.Then 3D morphological parameters of fractures were calculated by using Grasselli’s model.The results show that the failure mode of granites developed by true triaxial stress can be categorized into tension failure and shear failure.Based on the spatial position of fractures,they can be divided into tension fracture surface,S-1 shear fracture surface,and S-2 shear fracture surface.Micro-failure of the tension fracture surface is dominated by mainly intergranular fracture;the maximum height of asperities on the fracture surface and the 3D roughness of fracture surfaces are influenced by σ_(3) only and they are greater than those of shear fracture surfaces,a lower overall uniformity than tension fracture surface.S-1 shear fracture surface and S-2 shear fracture surface are dominated by intragranular and intergranular coupling fracture.The maximum height of asperities on the fracture surface and 3D roughness of fracture surface are affected by σ_(1),σ_(2),and σ_(3).With the increase of σ_(2) or σ_(3),the cutting off of asperities on the fracture surface becomes more common,the maximum height of asperities and 3D roughness of fracture surface further decrease,and the overall uniformity gets further improved.The experimental results are favorable for selecting technical parameters of enhanced geothermal development and the safety of underground mine engineering.展开更多
With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure...With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure mode turns from brittle tension failure to structure ductile failure and its limit strength also increases.The restriction of minimal principal stress on the initiation and development of microcrack and the change of micro-unit stress state by the intermediate principal stress play a decisive role in the increase of rock mass limit strength.Based on the rock mass failure behavior law under complex stress state and the σ2-dependence on the rock mass strength,we proposed a Modified Mohr-Coulomb(M-MC) strength criterion which is smooth and convex.Finally,the M-MC criterion is validated by multiaxial test data of eight kinds of rock mass.We also compared the fitting results with Mohr-Coulomb criterion(MC).It shows that the new criterion fits the test data better than the Mohr-Coulomb criterion.So the M-MC strength criterion well reveals the rock mass bearing behavior and can be widely used in the rock mass strength analysis.The results can provide theoretical foundations for stability analysis and reinforcement design of complex underground engineering.展开更多
In this study,the moment tensor of transversely isotropic shale was analyzed using a discrete element method-acoustic emission model(DEM-AE model).Firstly,the failure modes of the shale obtained from the acoustic emis...In this study,the moment tensor of transversely isotropic shale was analyzed using a discrete element method-acoustic emission model(DEM-AE model).Firstly,the failure modes of the shale obtained from the acoustic emission(AE) events and physical experiments were compared.Secondly,the relationships between AE events and seismic magnitudes,and AE events and the resulting cracks were analyzed.Finally,a moment tensor T-k chart describing the seismic source was introduced to demonstrate the differences in the transversely isotropic shale.The results showed that,for different anisotropy angles,a linear logarithmic relationship existed between the cumulative AE events and the seismic magnitude in the concentration area of the AE events.A normal distribution was observed for the number of AE events as the seismic magnitude changed from small to large.The moment tensor T-k chart indicated that the number and proportion of linear tension cracks in the shale were highest.When θ = 30°,the peak seismic magnitude was at a minimum.The average seismic magnitude in the concentration area of the AE events was also relatively small.Points close to the U=-1/3V line and the number of cracks included in a single AE event were at a minimum,and the corresponding peak stress also reached its lowest level.In contrast,when θ=90°,all related parameters were contrary to the above θ = 30° case.The DEM-AE model and the moment tensor T-k chart are suitable for analyzing the distribution of shale cracks appearing during the loading process.This study can provide constructive references for future research on the fracturing treatment of shale.展开更多
文摘BACKGROUND: Ensuring about the patient's safety is the f irst vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care.METHODS: In this study, in combination(qualitative action research and quantitative crosssectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis(HFMEA). To classify the failure modes from the "nursing errors in clinical management model(NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics(total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used.RESULTS: In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identifi ed by HFMEA. 25(11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors(54.7%) and knowledge and skill(9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy.CONCLUSION: "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team communication" and "preventive management of equipment's" were on the agenda as the guidelines.
文摘Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.
基金supported by National Natural Science Foundation of China(31470581)Fundamental Research Funds for the Central Universities(2572016EBJ1).
文摘A wood-based X-type lattice sandwich structure was manufactured by insertion-glue method.The birch was used as core,and Oriented Strand Board was used as panel of the sandwich structure.The short beam shear properties and the failure modes of the wood-based X-type lattice sandwich structure with different core direction(vertical and parallel),unit specification(120 mm×60 mm and 60 mm×60 mm),core size(50 mm and 60 mm),and drilling depth(9 mm and 12 mm)were investigated by a short beam shear test and the establishment of a theoretical model to study the equivalent shear modulus and deflection response of the X-type lattice sandwich structure.Results from the short beam shear test and the theoretical model showed that the failure modes of the wood-based X-type lattice sandwich structure were mainly the wrinkling and crushing of the panels under three-point bending load.The experimental values of deflection response of various type specimens were higher than the theoretical values of them.For the core direction of parallel,the smaller the unit specification is,the shorter the core size is,and the deeper the drilling depth is,the greater the short beam shear properties of the wood-based X-type lattice sandwich structure is.
基金Supported by the National Natural Science Foundation of China(50975011)
文摘To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads were studied through simulation, test and analytic methods. Based on published papers, the dimensionless values of limit loads for different failure modes were modified according to real test condition. The load-deformation relation from the analytical formulae was compared with that from experimental and numerical results. A mechanism map was provided to reveal the dependence of the dominant collapse mechanism upon the geometry parameters of the face and the core. The results show that the prediction accuracy was high only if the face thickness was much smaller than the core thickness.
文摘Functional failure mode of commercial deep sub-micron static random access memory(SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result.
基金supported by the NSFC projects(Nos.52225404,42321002,4204100030)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201911413037)the Excellent Youth Team of the Central Universities of China(No.2023YQTD01).
文摘The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field.Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed.Different forms of failure characteristics occur in the roadway.In order to study the failure mechanism with different spatial characteristics,rock-like material specimens with holes in 9 different horizontal and vertical angles were designed.The true triaxial test system was used to carry out the test with the same loading path.The results show that the horizontal angle a and vertical angle β have a significant effect on the specimen strength,specimen rupture angle,and the form of spalling failure in the hole.The spatial angle leads to the formation of asymmetric heterotype V-notches in both sides within the hole.The asymmetry is evident in both the depth and extent of spalling.The strength of the specimen increases and then decreases with increasing vertical angle β.The rupture angle increases and then decreases with increasing horizontal angle a and increases with the increase of the vertical angle β.The stress analytical model of the specimen under three-dimensional compression was established.The distribution of principal stresses around the holes was theoretically analyzed.It is found that the presence of spatial angle changes the distribution of principal stresses around the hole from symmetric to asymmetric distribution.The shift of the principal stresses is responsible for the change from a V-notch to a heterotype V-notch.
基金supports for this work,provided by the Natural Science Foundation of Anhui Province(No.1908085QE187,1808085ME161)the Open Research Program of Key Laboratory of Safety and High-efficiency Coal Mining(No.JYBSYS2019202)the Open Research Program of State Key Laboratory Cultivation Base for Gas Geology and Gas Control(No.WS2019B09)are gratefully acknowledged.
文摘A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial dynamic compressive loads were experimentally and numerically investigated.The experiments were conducted using a split Hopkinson pressure bar(SHPB)system.The results indicated that the typical failure of coal is lateral and axial at lower loading rates and totally smashed at higher loading rates.The further fractography analysis of lateral and axial fracture fragments indicated that the coal failure under dynamic compressive load is caused by tensile brittle fracture.In addition,the typical failure modes of coal under dynamic load were numerically reproduced.The numerical results indicated that the axial fracture is caused directly by the incident compressive stress wave and the lateral fracture is caused by the tensile stress wave reflected from the interface between coal specimen and transmitted bar.Potential application was further conducted to interpret dynamic problems in underground coal mine and it manifested that the lateral and axial fractures of coal constitute the parallel cracks in the coal mass under roof fall and blasting in mining space.
基金funding from Project (Nos.51474249 and 51404179) supported by National Natural Science Foundation of ChinaProject Supported by Innovation Driven Plan of Central South University of China (No.2016CX019)Project (No. SKLGDUEK1405) funded by the Open Projects of State Key Laboratory for Geo-mechanics and Deep Underground Engineering of China University of Mining and Technology,in China
文摘The strength and failure characteristics of most natural rock mass are influenced by discontinues such as fissures, joints, and weak surfaces. In the present study, the strength and failure behavior of ubiquitous- joint rock-l!ke specimens under uniaxial loading have been investigated by DIC (digital image correlation) and discrete element numerical method (PFC2D). The results are obtained. Firstly, the UCSJ of spec- imens with γ= 15° or 30° shows similar tendency while α goes from 0° to 75°. With γ= 45° or 60°, the UCSJ of specimens increases when α goes from 0° to 30° and decreases after α goes beyond 30°. With γ=75°, the peak UCSJ value is reached when α=0°. The UCSJ value shows an increasing trend when α goes from 60° to 75°. Secondly, the ubiquitous-joint specimens present different failure modes for various levels of α and γ(β-α). Based on the experimental results, the failure mode of ubiquitous-joint specimens can be classified into three categories: stepped path failure, failure through parallel plane, and failure through cross plane.
基金the financial s upport from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S451)。
文摘In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution of AE parameters in the rock failure process and fracture fractal dimension characteristics after failure were analyzed.The results revealed that the activity of the AE signal is strongly related toσ3.The evolution of the Ib value can be divided into the I-fluctuation,II-stability,and III-decrease stages.In the first stage,the Ib value of the AE was relatively high,and the AE energy was low.Then,the Ib value tended to be stable;however,the fluctuation amplitude decreased,and the AE energy rapidly increased.In the stage of decrease,the AE energy sharply increased before the load approached the peak value,and the Ib value significantly decreased and dropped to the lowest point before the peak value.Asσ3 increased,the rock’s failure mode changed from tensile failure to shear failure and became more coordinated.As the confining pressure increased,the shape dimension decreased,and the order degree of rock failure increased.The confining pressure exerted a certain control effect on the rock failure.
基金supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)National Natural Science Foundation of China No.51827901 and U2013603
文摘In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5°around the major axis,the stress deviation rate is-92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1°around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.
基金supported by the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01)Natural Science Youth Project of university scientific research plan in Xinjiang(XJEDU2021Y053).
文摘Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we performed triaxial compression tests on different glutenites.The results indicate that failure modes of glutenite are complex due to the existence of gravel.Under different confining pressures,three failure modes were observed.The first failure mode,a tensile failure under uniaxial compression,produces multiple tortuous longitudinal cracks.In this failure mode,the interaction between gravels provides the lateral tensile stress for rock splitting.The second failure mode occurs under low and medium confining pressure and produces a crack band composed of micro-cracks around gravels.This failure mode conforms to the Mohr-Coulomb criterion and is generated by shear failure.In this failure mode,shear dilatancy and shear compaction may occur under different confining pressures to produce different crack band types.In the second failure mode,gravel-induced stress concentration produces masses of initial micro-cracks for shear cracking,and gravels deflect the fracture surfaces.As a result,the fracture is characterized by crack bands that are far broader than in fine-grained rocks.The third failure mode requires high confining pressure and produces disconnected cracks around gravels without apparent crack bands.In this failure mode,the gravel rarely breaks,indicating that the formation of these fractures is related to the deformation of the matrix.The third failure mode requires lower confining pressure in glutenite with weak cement and matrix support.Generally,unlike fine-grained rocks,the failure mode of glutenite is not only controlled by confining pressure but also by the gravel.The failure of glutenite is characterized by producing cracks around gravels.These cracks are produced by different mechanisms and distributed in different manners under different confining pressures to form different fracture patterns.Therefore,understanding the rock microstructure and formation stress state is essential in guiding glutenite reservoir development.
文摘In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
文摘PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.
基金supported by the National Natural Science Foundation of China (Grant No. 50774090)
文摘Landslides are one of the key problems for stability analysis of pipelines in the western region of China where the geological conditions are extremely complicated. In order to offer a theoretical basis for the pipe-soil interaction, the general finite element program ABAQUS is used to analyze the distribution of pipe strain caused by landslide through which the pipeline passes. In this paper the Ramberg-Osgood constitutive equation is used to study the strain-based mechanical characteristics of pipelines. Different calculation schemas are designed by considering the change of spatial relationship between pipeline and landslide, and the change of D/t, diameter-thickness ratio of pipeline. The results indicate that the pipeline is primarily subjected to tension stress when the landslide crosses the pipeline perpendicularly, the pipe strain is a maximum along the central axis of the landslide, and reverse bending occurs on pipeline at both edges of the landslide. The pipeline is primarily subjected to friction force caused by the downward movement of the landslide, and the friction force is relatively small when the landslide is parallel to the pipeline. The pipe strain is in proportional to D/t, and this means decreasing D/t can help to improve security of pipelines subjected to the landslide.
基金Financial support for this work, provided by the National Key Basic Research Development Plan Project of China (No.2013CB036003)the National Natural Science Foundation of China (Nos.51134001,51374198)the Young Scientists Fund of the National Science Foundation of China (No.51504247)
文摘The uniaxial compression experiments on the sandstone samples containing double fissures and a single circular hole were carried out by using electro-hydraulic servo universal testing machine to investigate the effect of rock bridge angle β and fissure angle α on mechanical properties and evolution characteristics of cracks.The results show that the peak strength,peak strain and elastic modulus of defected specimens decrease comparing with those for intact sample,and show a decreased trend firstly and then increase with β changing from 0° to 90°.The peak strength and elastic modulus achieve the minimum value as the rock bridge angle is 60°,while the peak strain reaches the minimum value with the rock bridge angle of 45°.The crack initiation of tested rock samples occurs firstly in stress concentration areas at tips of prefabricated fissures under uniaxial compression,and then propagates constantly and coalescences with the prefabricated hole.Some secondary cracks initiate and propagate as well until buckling failure happens.The rock bridge angle has a great influence on crack initiation,coalescence,final failure mode,crack initiation stress and transfixion stress.The peak strength varies significantly,while the elastic modulus and peak strain change slightly,and the failure modes are also different due to the influence of fissure angle.
基金the financial support from the National Natural Science Foundation of China(Nos.52039007 and 52009086)the Sichuan Province Youth Science and Technology Innovation Team(No.2020JDTD0001)。
文摘Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks.
基金support from the National Natural Science Foundation of China(Nos.51974173 and 52004147)the Natural Science Foundation of Shandong Province(Nos.ZR2020QD122 and ZR2020QE129).
文摘As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law and mechanism regarding the influence of the confining pressure constraints on 3D morphological features of natural fractures.First,fracture surfaces were obtained by true triaxial compression test and 3D laser scanning.Then 3D morphological parameters of fractures were calculated by using Grasselli’s model.The results show that the failure mode of granites developed by true triaxial stress can be categorized into tension failure and shear failure.Based on the spatial position of fractures,they can be divided into tension fracture surface,S-1 shear fracture surface,and S-2 shear fracture surface.Micro-failure of the tension fracture surface is dominated by mainly intergranular fracture;the maximum height of asperities on the fracture surface and the 3D roughness of fracture surfaces are influenced by σ_(3) only and they are greater than those of shear fracture surfaces,a lower overall uniformity than tension fracture surface.S-1 shear fracture surface and S-2 shear fracture surface are dominated by intragranular and intergranular coupling fracture.The maximum height of asperities on the fracture surface and 3D roughness of fracture surface are affected by σ_(1),σ_(2),and σ_(3).With the increase of σ_(2) or σ_(3),the cutting off of asperities on the fracture surface becomes more common,the maximum height of asperities and 3D roughness of fracture surface further decrease,and the overall uniformity gets further improved.The experimental results are favorable for selecting technical parameters of enhanced geothermal development and the safety of underground mine engineering.
基金supported by the National Natural Science Foundation of China (Nos.50774082 and 50804046)
文摘With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure mode turns from brittle tension failure to structure ductile failure and its limit strength also increases.The restriction of minimal principal stress on the initiation and development of microcrack and the change of micro-unit stress state by the intermediate principal stress play a decisive role in the increase of rock mass limit strength.Based on the rock mass failure behavior law under complex stress state and the σ2-dependence on the rock mass strength,we proposed a Modified Mohr-Coulomb(M-MC) strength criterion which is smooth and convex.Finally,the M-MC criterion is validated by multiaxial test data of eight kinds of rock mass.We also compared the fitting results with Mohr-Coulomb criterion(MC).It shows that the new criterion fits the test data better than the Mohr-Coulomb criterion.So the M-MC strength criterion well reveals the rock mass bearing behavior and can be widely used in the rock mass strength analysis.The results can provide theoretical foundations for stability analysis and reinforcement design of complex underground engineering.
基金Financial support for this work is provided by the National Natural Science Foundation of China (no.51474208)the National Key Research and Development Program of China (2016YFC0600904)+1 种基金a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)The fnancial support provided by China Scholarship Council (CSC,Grant no.201606420013)
文摘In this study,the moment tensor of transversely isotropic shale was analyzed using a discrete element method-acoustic emission model(DEM-AE model).Firstly,the failure modes of the shale obtained from the acoustic emission(AE) events and physical experiments were compared.Secondly,the relationships between AE events and seismic magnitudes,and AE events and the resulting cracks were analyzed.Finally,a moment tensor T-k chart describing the seismic source was introduced to demonstrate the differences in the transversely isotropic shale.The results showed that,for different anisotropy angles,a linear logarithmic relationship existed between the cumulative AE events and the seismic magnitude in the concentration area of the AE events.A normal distribution was observed for the number of AE events as the seismic magnitude changed from small to large.The moment tensor T-k chart indicated that the number and proportion of linear tension cracks in the shale were highest.When θ = 30°,the peak seismic magnitude was at a minimum.The average seismic magnitude in the concentration area of the AE events was also relatively small.Points close to the U=-1/3V line and the number of cracks included in a single AE event were at a minimum,and the corresponding peak stress also reached its lowest level.In contrast,when θ=90°,all related parameters were contrary to the above θ = 30° case.The DEM-AE model and the moment tensor T-k chart are suitable for analyzing the distribution of shale cracks appearing during the loading process.This study can provide constructive references for future research on the fracturing treatment of shale.