期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于Stacking集成的RF-ET-KDE烧结过程物理指标区间预测模型
1
作者 康增鑫 陈进朝 +1 位作者 王金杨 吴朝霞 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期1369-1378,共10页
由于烧结过程中存在众多不确定性因素,使得机理分析和点预测结果的可靠性不足.基于此提出随机森林-极限树-核密度估计(random forest-extreme tree-kernel density estimation,RF-ET-KDE)算法对物理指标(粒度、水分)进行区间预测.首先,... 由于烧结过程中存在众多不确定性因素,使得机理分析和点预测结果的可靠性不足.基于此提出随机森林-极限树-核密度估计(random forest-extreme tree-kernel density estimation,RF-ET-KDE)算法对物理指标(粒度、水分)进行区间预测.首先,采用数据预处理和特征选择操作筛选出最适合建模的特征变量.其次,使用基于Stacking的RF-ET算法对指标进行点预测,该算法使得模型有较高的准确性和泛化性.然后,采用KDE算法计算指标的预测误差,得到了一定置信水平下的分布区间和区间预测结果.最后,用所建模型与其余组合模型进行对比.结果表明,RF-ET算法有较高的点预测效果,KDE算法可以很好地量化指标的误差,可以得到较高可靠度的区间预测结果. 展开更多
关键词 烧结过程 随机森林-极限树 核密度估计 物理指标 区间预测
在线阅读 下载PDF
基于CNN和ET的智能ECG识别方法 被引量:1
2
作者 张丹 何志涛 +1 位作者 陈永毅 尹武涛 《浙江工业大学学报》 CAS 北大核心 2021年第6期602-607,共6页
心电图(ECG)是检测心血管疾病的重要依据之一,通过对各类心电图的实时分析,可以达到检测被测者房颤及心脏健康情况的目的。采用基于卷积神经网络(CNN)和极端随机树(ET)混合模型的心电信号分类方法,通过连续小波变换对数据进行滤波处理,... 心电图(ECG)是检测心血管疾病的重要依据之一,通过对各类心电图的实时分析,可以达到检测被测者房颤及心脏健康情况的目的。采用基于卷积神经网络(CNN)和极端随机树(ET)混合模型的心电信号分类方法,通过连续小波变换对数据进行滤波处理,在此基础上通过CNN-ET混合模型,实现了心电信号的分类。方法结合了CNN对一维数据的强大表征能力,通过ET降低了异常值影响,预防了过拟合问题,具有较强的泛化能力。将所提出的方法在MIT-BIH数据集上进行了测试,在5类心电心拍次数不平衡问题检测中准确率达到99.95%,与现有方法相比,该改进方法进一步提高了ECG信号分类的精确度。 展开更多
关键词 卷积神经网络 小波分解 极端随机树 ECG分类
在线阅读 下载PDF
基于特征工程和MRFO-ET的短期风电功率预测 被引量:5
3
作者 康文豪 徐天奇 +2 位作者 王阳光 邓小亮 李琰 《水利水电技术(中英文)》 北大核心 2022年第3期185-194,共10页
为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取... 为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取小时属性特征,并通过对风速、风向和温度等原始气象特征进行特征创造,从而充分挖掘历史数据的隐含信息,同时通过PCA方法降低数据维度。其次,将降维后的数据输入ET模型,并利用MRFO优化ET模型的参数;最后,以新疆某风电场实测数据进行了算例仿真。结果表明:与5种典型机器学习模型相比,ET模型具有更高的风电预测准确度。与单一ET模型相比,特征工程-ET模型较大程度地提高了预测精度,验证了特征工程方法的有效性。在同等条件下,特征工程-MRFO-ET模型比使用特征工程-ET模型均方根误差和平均绝对误差分别降低了29.46%和36.54%,而拟合优度系数提高了3.97%。与此同时,特征工程-MRFO-ET模型也比特征工程-GA-ET模型和特征工程-PSO-ET模型拥有更高的预测精度。研究成果可为解决短期风电功率预测问题提供了一种新的思路。 展开更多
关键词 短期风电功率预测 特征工程 主成分分析 蝠鲼觅食优化算法 极端随机树 新能源 影响因素 人工智能算法
在线阅读 下载PDF
基于MICE_RF的组合赋权—极限随机树岩爆预测模型 被引量:1
4
作者 温廷新 苏焕博 《黄金科学技术》 CSCD 2022年第3期392-403,共12页
目前岩爆预测的真实训练数据量小、数据存在缺失,为了更加准确地预测岩爆等级,提出了一种基于链式随机森林多重插补(MICE_RF)算法的组合赋权—极限随机树(ET)预测模型。首先,在选取岩爆灾害主要评判指标的基础上,采用MICE_RF算法插补缺... 目前岩爆预测的真实训练数据量小、数据存在缺失,为了更加准确地预测岩爆等级,提出了一种基于链式随机森林多重插补(MICE_RF)算法的组合赋权—极限随机树(ET)预测模型。首先,在选取岩爆灾害主要评判指标的基础上,采用MICE_RF算法插补缺失数据;然后,由改进层次分析法(IAHP)和基于指标相关性的权重确定方法(CRITIC)确定指标主、客观权重,并引入权向量距离概念对指标组合赋权;最后,将插补和赋权后数据集采用ET算法,构建岩爆等级预测模型。利用国内外工程实例数据进行20次随机抽样试验,并与其他模型进行对比分析。结果表明:MICE_RF插补后可显著提高岩爆模型预测效果;改进AHPCRITIC法较改进前更具优势,该模型平均预测准确率为93.10%,各比较指标结果均优于对比模型,预测结果更稳定。 展开更多
关键词 岩爆等级预测 数据缺失 链式随机森林的多重插补(MICE_RF)算法 组合赋权 权向量距离 极限随机树(et)算法
在线阅读 下载PDF
基于机器学习的山洪灾害快速预报方法 被引量:13
5
作者 周聂 侯精明 +3 位作者 陈光照 马红丽 洪增林 李新林 《水资源保护》 EI CAS CSCD 北大核心 2022年第2期32-40,111,共10页
基于高精度水动力模型与机器学习技术,运用极限随机树(ERT)及KNN算法,构建了高分辨率山洪灾害快速预报模型。利用确定系数、平均绝对误差和均方根误差3种指标评估模型的整体可靠性,同时,截取流域出口断面流量验证模型的预报性能。结果表... 基于高精度水动力模型与机器学习技术,运用极限随机树(ERT)及KNN算法,构建了高分辨率山洪灾害快速预报模型。利用确定系数、平均绝对误差和均方根误差3种指标评估模型的整体可靠性,同时,截取流域出口断面流量验证模型的预报性能。结果表明:所建模型预报结果与水动力模型模拟结果淹没范围基本一致,流域淹没范围平均相对误差低于5%,模型整体稳定可靠;流域出口断面流量平均相对误差低于10%,断面平均水深、流速平均相对误差低于5%,模型预报性能良好;模型可在10s内完成最大淹没情况计算并输出淹没范围图,能为紧急决策提供足够的前置时间,协助决策者更好地采取应对措施。 展开更多
关键词 山洪灾害 快速预报 机器学习 极限随机树 KNN算法 水动力模型
在线阅读 下载PDF
序列信息融合与两阶段特征选择的膜蛋白预测 被引量:4
6
作者 郭磊 王顺芳 《计算机工程与应用》 CSCD 北大核心 2019年第6期145-150,共6页
膜蛋白的功能与其类型密切相关,因此膜蛋白类型的预测具有重要意义。针对膜蛋白特征表达过程中出现的特征维数高的问题,结合最大信息系数与遗传算法提出一种两阶段特征选择(MIC-GA)。抽取膜蛋白序列信息中的伪氨基酸组成、二肽组成和位... 膜蛋白的功能与其类型密切相关,因此膜蛋白类型的预测具有重要意义。针对膜蛋白特征表达过程中出现的特征维数高的问题,结合最大信息系数与遗传算法提出一种两阶段特征选择(MIC-GA)。抽取膜蛋白序列信息中的伪氨基酸组成、二肽组成和位置特异性分数矩阵等特征融合后作为特征参数,并在融合过程中提出一种改进的ReliefF算法(FReliefF)得到更有效的特征分数。基于Stacking集成学习框架,两次使用极端随机树对膜蛋白类型进行合理化预测。结果表明该方法能够有效提高膜蛋白预测的准确率。 展开更多
关键词 膜蛋白预测 最大信息系数 遗传算法 特征选择 特征融合 极端随机树
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部