极低频电磁台网成功观测到大量的Pc1地磁脉动事件,研究极低频Pc1地磁脉动的自动识别方法对于全面分析地球空间电磁物理环境具有重要意义.本文采用了YOLOv8目标检测网络、ResNet残差网络和定向特征增强技术,提出了一种基于计算机视觉的Pc...极低频电磁台网成功观测到大量的Pc1地磁脉动事件,研究极低频Pc1地磁脉动的自动识别方法对于全面分析地球空间电磁物理环境具有重要意义.本文采用了YOLOv8目标检测网络、ResNet残差网络和定向特征增强技术,提出了一种基于计算机视觉的Pc1地磁脉动自动识别模型(Automatic Detection Model for Pc1 Geomagnetic Pulsation,简称ADM-Pc1).以大连台站和丽江台站的极低频观测数据为例,利用2015—2016年的数据作为训练集进行模型的监督学习,并使用2017—2022年的数据作为测试集对模型性能进行评估.实验结果显示,ADM-Pc1模型的F1-Score值达到了95%,错分率仅为0.9%,虚警率仅为5.8%,漏检率仅为9%,处理1天数据平均耗时是2.72 s,显著优于现有的最优识别模型.这表明,ADM-Pc1模型在识别效果和计算速度方面均能更好地满足实际工程需求.展开更多
生物鲁棒性是生物系统抵抗外界扰动或内部参数摄动引起系统行为变化的一种能力。电磁场是一种外界物理因素,可以对生物体产生影响。为了建立一种电磁场扰动下生物系统稳定鲁棒性的研究方法,以Lyapunov理论为基础,用电磁场细胞暴露系统...生物鲁棒性是生物系统抵抗外界扰动或内部参数摄动引起系统行为变化的一种能力。电磁场是一种外界物理因素,可以对生物体产生影响。为了建立一种电磁场扰动下生物系统稳定鲁棒性的研究方法,以Lyapunov理论为基础,用电磁场细胞暴露系统实时记录了在磁感应强度B为0、0.09、0.38、0.76、7.33、14.78 m T的电磁场暴露下细胞内活性氧自由基(ROS)和钙离子(Ca2+)的含量,分析了电磁场扰动前的细胞状态稳态点和稳定域,以及电磁场扰动后的状态转移和稳定鲁棒域。结果表明:(1)细胞无扰时ROS的稳态点是46.157~120.913,Ca2+的稳态点是25.430~55.686,ROS的稳定域半径是1.688~10.278,Ca2+的稳定域半径是2.782~13.345;(2)B〈7.33 m T的电磁场扰动没有提高胞内ROS含量,B为14.78 m T的电磁场扰动可阶跃性提高胞内ROS含量,B为0和0.09 m T的电磁场扰动没有提高胞内Ca2+含量,B为0.38 m T的电磁场扰动可持续性提高胞内Ca2+含量。结论是:(1)无电磁场扰动时,细胞内ROS和Ca2+状态可以保持稳定;(2)电磁场扰动在较高水平(如B为14.78 m T)时,才能改变细胞内ROS和Ca2+的状态;(3)细胞的鲁棒域与电磁场的磁感应强度无关。展开更多
文摘极低频电磁台网成功观测到大量的Pc1地磁脉动事件,研究极低频Pc1地磁脉动的自动识别方法对于全面分析地球空间电磁物理环境具有重要意义.本文采用了YOLOv8目标检测网络、ResNet残差网络和定向特征增强技术,提出了一种基于计算机视觉的Pc1地磁脉动自动识别模型(Automatic Detection Model for Pc1 Geomagnetic Pulsation,简称ADM-Pc1).以大连台站和丽江台站的极低频观测数据为例,利用2015—2016年的数据作为训练集进行模型的监督学习,并使用2017—2022年的数据作为测试集对模型性能进行评估.实验结果显示,ADM-Pc1模型的F1-Score值达到了95%,错分率仅为0.9%,虚警率仅为5.8%,漏检率仅为9%,处理1天数据平均耗时是2.72 s,显著优于现有的最优识别模型.这表明,ADM-Pc1模型在识别效果和计算速度方面均能更好地满足实际工程需求.
文摘生物鲁棒性是生物系统抵抗外界扰动或内部参数摄动引起系统行为变化的一种能力。电磁场是一种外界物理因素,可以对生物体产生影响。为了建立一种电磁场扰动下生物系统稳定鲁棒性的研究方法,以Lyapunov理论为基础,用电磁场细胞暴露系统实时记录了在磁感应强度B为0、0.09、0.38、0.76、7.33、14.78 m T的电磁场暴露下细胞内活性氧自由基(ROS)和钙离子(Ca2+)的含量,分析了电磁场扰动前的细胞状态稳态点和稳定域,以及电磁场扰动后的状态转移和稳定鲁棒域。结果表明:(1)细胞无扰时ROS的稳态点是46.157~120.913,Ca2+的稳态点是25.430~55.686,ROS的稳定域半径是1.688~10.278,Ca2+的稳定域半径是2.782~13.345;(2)B〈7.33 m T的电磁场扰动没有提高胞内ROS含量,B为14.78 m T的电磁场扰动可阶跃性提高胞内ROS含量,B为0和0.09 m T的电磁场扰动没有提高胞内Ca2+含量,B为0.38 m T的电磁场扰动可持续性提高胞内Ca2+含量。结论是:(1)无电磁场扰动时,细胞内ROS和Ca2+状态可以保持稳定;(2)电磁场扰动在较高水平(如B为14.78 m T)时,才能改变细胞内ROS和Ca2+的状态;(3)细胞的鲁棒域与电磁场的磁感应强度无关。