期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于谱聚类和优化极端学习机的超短期风速预测 被引量:32
1
作者 王辉 刘达 王继龙 《电网技术》 EI CSCD 北大核心 2015年第5期1307-1314,共8页
较高精度的超短期风速预测是并网运行风电场风电功率预测预报系统建立和运行的必要前提及保证。由于风速影响因素众多,具有较大的波动性和随机性,并具有高度的自相关性,给传统的风速预测方法带来了极大的挑战。提出一种基于谱聚类和极... 较高精度的超短期风速预测是并网运行风电场风电功率预测预报系统建立和运行的必要前提及保证。由于风速影响因素众多,具有较大的波动性和随机性,并具有高度的自相关性,给传统的风速预测方法带来了极大的挑战。提出一种基于谱聚类和极端学习机的超短期风速预测方法。该方法首先利用小波变换和主成分分析对风速数据进行去噪和降维处理,剔除数据的不规则波动,有效降低数据维度;然后分别应用谱聚类对小波变换后的各分解序列进行聚类分析,减少训练样本空间,提高样本有效性,降低计算复杂度;再应用极端学习机对各分解序列分别进行训练,同时通过遗传算法对极端学习机输入权值、偏置等参数进行优化,确保各分解序列输出最佳预测模型;最后将各分解序列预测结果相加得到最终预测结果。以某风电场实际数据进行的建模结果表明该模型有效实现了对风速的超短期、多步预测,采用的方法合理有效。 展开更多
关键词 超短期风速预测 谱聚类 极端学习机
在线阅读 下载PDF
改进极限学习机的移动界面模式半监督分类 被引量:7
2
作者 贾伟 华庆一 +3 位作者 张敏军 陈锐 姬翔 王博 《计算机工程与应用》 CSCD 北大核心 2018年第2期11-19,共9页
针对现有半监督分类方法无法对移动界面模式进行有效分类的问题,提出一种采用改进极限学习机的移动界面模式半监督分类方法。为了提高极限学习机的分类效果,利用改进的粒子群优化算法优化极限学习机的初始参数。根据移动界面模式数据的... 针对现有半监督分类方法无法对移动界面模式进行有效分类的问题,提出一种采用改进极限学习机的移动界面模式半监督分类方法。为了提高极限学习机的分类效果,利用改进的粒子群优化算法优化极限学习机的初始参数。根据移动界面模式数据的特点,利用主动学习和模糊C均值聚类提取信息丰富的未标记数据进行训练和标记。利用分类器实现对所有数据的分类。实验结果表明,该分类方法能够对移动界面模式数据进行有效和合理的分类。 展开更多
关键词 粒子群优化 极限学习机 移动界面模式 模糊C均值聚类 半监督分类
在线阅读 下载PDF
一种新型模块化风速预测方法 被引量:10
3
作者 潘超 秦本双 +1 位作者 蔡国伟 袁翀 《太阳能学报》 EI CAS CSCD 北大核心 2019年第8期2196-2204,共9页
针对风电场风速随机性强、波动性明显以及预测难度高等问题,提出一种新型模块化风速预测的方法。该方法主要包含3个模块:风速属性加权模块、智能优化聚类模块及极限学习机风速预测模块。首先考虑不同气象属性对风速的影响和风速的时间... 针对风电场风速随机性强、波动性明显以及预测难度高等问题,提出一种新型模块化风速预测的方法。该方法主要包含3个模块:风速属性加权模块、智能优化聚类模块及极限学习机风速预测模块。首先考虑不同气象属性对风速的影响和风速的时间波动特性,计算风速属性矩阵元素的皮尔逊系数值并进行加权;然后采用遗传-模拟退火算法优化模糊c均值聚类方法,对加权风速属性矩阵矢量进行聚类;再通过极限学习机构建各类别的风速预测模型,进行短期风速预测。最后结合美国一风电场(N39.91°,W105.29°)的实测数据对风速进行预测,通过对比仿真结果与实测数据验证该文方法的正确性和有效性,结果表明该方法具有较高的预测精度。 展开更多
关键词 风速预测 属性加权 模糊聚类 极限学习机
在线阅读 下载PDF
基于DPK-means和ELM的日前光伏发电功率预测 被引量:15
4
作者 李雯 魏斌 +1 位作者 韩肖清 郭玲娟 《现代电力》 北大核心 2020年第4期351-357,共7页
日前光伏发电功率预测是电网经济调度的重要依据。针对K均值(K-means)聚类算法初始聚类中心和聚类数目不易确定的问题和传统神经网络训练参数较多、易陷入局部最优等缺陷,构建了DPK-means和极限学习机(extreme learning machine,ELM)的... 日前光伏发电功率预测是电网经济调度的重要依据。针对K均值(K-means)聚类算法初始聚类中心和聚类数目不易确定的问题和传统神经网络训练参数较多、易陷入局部最优等缺陷,构建了DPK-means和极限学习机(extreme learning machine,ELM)的组合预测算法实现日前光伏发电功率的预测模型。首先,采用密度峰值法(density peaks clustering,DPC)对K-means聚类进行优化,解决了Kmeans算法初始聚类中心和聚类数目不易确定的问题。然后,在利用DPK-means算法对历史气象数据样本聚类分析的基础上,建立ELM预测模型实现日前光伏发电功率的预测。经实测数据验证可知,所提出的组合预测算法可得到较好的预测结果,具有较强的实用性。 展开更多
关键词 光伏发电功率 日前预测 K-MEANS聚类 密度峰值法 极限学习机
在线阅读 下载PDF
基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测 被引量:32
5
作者 彭显刚 潘可达 +2 位作者 张丹 刘艺 林志坚 《电网技术》 EI CSCD 北大核心 2020年第2期603-613,共11页
针对季节性电力负荷划分不准确及温度、湿度对电力负荷的动态性影响,提出一种基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测模型。采用聚类与CART树相结合的方法,根据地区历史负荷数据自适应的确定当地季节性负荷划分规则... 针对季节性电力负荷划分不准确及温度、湿度对电力负荷的动态性影响,提出一种基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测模型。采用聚类与CART树相结合的方法,根据地区历史负荷数据自适应的确定当地季节性负荷划分规则;使用非参数核密度估计方法提取季节典型日负荷曲线,并基于划分结果对各季负荷曲线进行重要点分割;同时根据分割结果,采用基于皮尔逊相关系数加权的相似系数,对各时段负荷进行参考日的筛选,以确定预测模型的输入量,最后提出一种结合纵横交叉算法参数优化的鲁棒极限学习机进行多分段预测模型的建立。通过实例仿真分析,验证了所提方法提高预测精度的有效性。 展开更多
关键词 聚类分析 CART决策树 重要点分割 改进鲁棒极限学习机 短期负荷预测
在线阅读 下载PDF
基于Kohonen聚类小波包分解和ELM的短期电力负荷预测 被引量:7
6
作者 黄媛玉 毛弋 娄宁娜 《湖南师范大学自然科学学报》 CAS 北大核心 2016年第4期53-58,共6页
提出基于Kohonen聚类、小波包分解和极限学习机的短期电力负荷组合预测方法.考虑到电力负荷具有一定周期相似性,经过Kohonen神经网络的聚类分析能确定与待预测日具有类似特性的负荷相似日;利用双正交小波对负荷数据进行分解,得到不同的... 提出基于Kohonen聚类、小波包分解和极限学习机的短期电力负荷组合预测方法.考虑到电力负荷具有一定周期相似性,经过Kohonen神经网络的聚类分析能确定与待预测日具有类似特性的负荷相似日;利用双正交小波对负荷数据进行分解,得到不同的频率分量分别送入ELM网络进行预测;最后将所得的不同频带中的待预测负荷分量组合,即为最终负荷预测值.经仿真实验表明,较传统单一的神经网络算法,该方法在预测精度和运算时间等方面均颇有提升,具有一定的实用性. 展开更多
关键词 短期负荷预测 小波包分解 Kohonen聚类 极限学习机
在线阅读 下载PDF
基于极限学习机的复杂制造系统动态调度 被引量:4
7
作者 马玉敏 陆晓玉 +1 位作者 乔非 沈一路 《计算机集成制造系统》 EI CSCD 北大核心 2021年第4期1081-1088,共8页
为提高复杂制造系统动态调度的有效性,提出一种数据驱动的动态调度方法。采用组合式调度规则作为调度策略,通过试验设计方法对调度样本数据进行优化;采用模糊C均值聚类算法和极限学习机算法对最优样本集进行聚类和学习,得到调度模型供... 为提高复杂制造系统动态调度的有效性,提出一种数据驱动的动态调度方法。采用组合式调度规则作为调度策略,通过试验设计方法对调度样本数据进行优化;采用模糊C均值聚类算法和极限学习机算法对最优样本集进行聚类和学习,得到调度模型供动态调度使用,有效地提高动态调度的精度和效率。所提方法在半导体制造Benchmark模型MIMAC6上进行了验证,结果显示,所提方法较单一规则的调度在制造系统长、短期性能指标上均有较大的改善,能综合优化制造系统生产性能。 展开更多
关键词 动态调度 数据驱动 极限学习机 模糊C均值聚类 复杂制造系统
在线阅读 下载PDF
基于优化FCM聚类的RELM风速预测 被引量:14
8
作者 潘超 秦本双 +2 位作者 何瑶 袁翀 沈清野 《电网技术》 EI CSCD 北大核心 2018年第3期842-848,共7页
准确的风速预测对大规模风电并网具有重要意义。提出一种基于互信息属性约简优化聚类的正则化极限学习机短期风速预测方法。首先考虑不同属性特征对风速的不同影响,计算风速特征属性序列与风速序列的互信息,并运用最大相关最小冗余算法... 准确的风速预测对大规模风电并网具有重要意义。提出一种基于互信息属性约简优化聚类的正则化极限学习机短期风速预测方法。首先考虑不同属性特征对风速的不同影响,计算风速特征属性序列与风速序列的互信息,并运用最大相关最小冗余算法进行特征选择,然后采用优化的模糊C均值聚类方法对风速样本进行聚类,再对极限学习机进行优化,进而构建风速组合预测模型。最后结合风电场实测数据进行风速预测实验,结果表明该方法具有较高的预测精度。 展开更多
关键词 风速预测 最大相关最小冗余 模糊C均值聚类 正则化 极限学习机
在线阅读 下载PDF
模糊核聚类支持向量机集成模型及应用 被引量:8
9
作者 张娜 张永平 《计算机应用》 CSCD 北大核心 2010年第1期175-177,共3页
为了进一步提高支持向量机在回归预测中的精度,提出一种基于模糊核聚类的最小二乘支持向量机集成方法。该方法采用模糊核聚类算法根据相互独立训练出的多个LS-SVM在验证集上的输出对其进行分类,并计算每一类中的所有个体在独立验证集上... 为了进一步提高支持向量机在回归预测中的精度,提出一种基于模糊核聚类的最小二乘支持向量机集成方法。该方法采用模糊核聚类算法根据相互独立训练出的多个LS-SVM在验证集上的输出对其进行分类,并计算每一类中的所有个体在独立验证集上的泛化误差,然后取其中平均泛化误差最小的个体作为这一类的代表,最后经简单平均法得到集成的最终预测输出。在短期电力负荷预测中的实验结果表明,该方法具有更高的精确度。 展开更多
关键词 最小二乘支持向量机 模糊核聚类 集成学习 短期负荷预测
在线阅读 下载PDF
基于层次聚类和极限学习机的母线短期负荷预测 被引量:11
10
作者 颜宏文 盛成功 《计算机应用》 CSCD 北大核心 2018年第8期2437-2441,共5页
利用传统方法预测母线负荷时,通常选取离待测日相近的一段时间作为历史相似日进行模型训练,没有考虑其天气情况、星期类型、节假日等因素的影响,相似日与待测日特征相差较大。为解决以上问题,提出一种基于层次聚类(HC)和极限学习机(ELM... 利用传统方法预测母线负荷时,通常选取离待测日相近的一段时间作为历史相似日进行模型训练,没有考虑其天气情况、星期类型、节假日等因素的影响,相似日与待测日特征相差较大。为解决以上问题,提出一种基于层次聚类(HC)和极限学习机(ELM)的母线负荷预测算法。首先使用层次聚类法将母线历史日负荷进行聚类,然后对层次聚类得出的聚类结果建立决策树,其次根据待测日的温度、湿度、星期和节假日类型等日属性在决策树中匹配出训练极限学习机预测模型的历史日负荷,最后建立极限学习机预测模型,对待测日母线日负荷进行预测。对两条不同母线的负荷进行了预测,与传统单一的极限学习机相比,所提算法的平均绝对百分比误差(MAPE)分别降低了1.4和0.8个百分点。实验结果表明,所提算法预测母线负荷具有更高的预测精度和稳定性。 展开更多
关键词 母线负荷 短期预测 层次聚类 决策树 极限学习机
在线阅读 下载PDF
ELM在虫害预测中的应用研究 被引量:1
11
作者 韦艳玲 《科学技术与工程》 北大核心 2012年第22期5580-5583,共4页
ELM(极限学习机)简单、易用,学习速度快且泛化性好,故将ELM引入虫害预测中。为了更好地提高ELM的效率和精度,首先采用模糊聚类对所有样本进行预处理,再把处理后的数据作为ELM的输入数据进行训练和预测。仿真实验结果表明,经过模糊聚类... ELM(极限学习机)简单、易用,学习速度快且泛化性好,故将ELM引入虫害预测中。为了更好地提高ELM的效率和精度,首先采用模糊聚类对所有样本进行预处理,再把处理后的数据作为ELM的输入数据进行训练和预测。仿真实验结果表明,经过模糊聚类处理后,ELM预测精度较高,泛化性好,能够满足虫害预测对准确率和实时性的要求。通过实例,为虫害预测的应用提供一种新方法。 展开更多
关键词 ELM(extreme learning machine) 模糊聚类 虫害 预测
在线阅读 下载PDF
基于模糊C均值聚类-变分模态分解和群智能优化的多核神经网络短期负荷预测模型 被引量:29
12
作者 王煜尘 窦银科 孟润泉 《高电压技术》 EI CAS CSCD 北大核心 2022年第4期1308-1319,共12页
电力系统的运行和控制中,短期负荷预测(short-term load forecasting,STLF)起着至关重要的作用。由于负荷的随机性和复杂性,准确预测负荷成为一项挑战。该文将结合了模糊C均值聚类(fuzzy C-means clustering,FCM)理论、变分模态分解(var... 电力系统的运行和控制中,短期负荷预测(short-term load forecasting,STLF)起着至关重要的作用。由于负荷的随机性和复杂性,准确预测负荷成为一项挑战。该文将结合了模糊C均值聚类(fuzzy C-means clustering,FCM)理论、变分模态分解(variational modal decomposition,VMD)和混沌粒子群优化(chaotic particle swarm optimization,CPSO)算法的多核极限学习机(multi-kernel extreme learning machine,MKELM)引入到预测模型中,构建聚类、分解、优化、训练、预测的负荷预测模型。然后基于已用于中国南极内陆泰山站能源系统的短期负荷预测应用案例,在原有模型基础上改进后获得适用于中国国内用电负荷预测模型。模型训练结果对比表明,该新模型在负荷短期预测中具有较高精度,能够反映区域用电负荷的变化趋势,研究成果为各种场景的用电负荷预测提供了新方法和新思路。 展开更多
关键词 模糊C均值聚类 变分模态分解 混沌粒子群优化 多核极限学习机 短期负荷预测
在线阅读 下载PDF
基于ELM改进层集成架构的时间序列预测 被引量:5
13
作者 樊树铭 覃锡忠 +2 位作者 贾振红 牛红梅 王哲辉 《计算机工程与设计》 北大核心 2019年第7期1915-1921,共7页
为进一步提高时间序列预测模型的预测精度和时间效率,提出一种基于极限学习机的层集成网络结构。以极限学习机网络作为基学习器,构成两层集成网络,每层网络在构建时利用先分类,再从类中选优的思想同时考虑基学习器的准确性与多样性,其... 为进一步提高时间序列预测模型的预测精度和时间效率,提出一种基于极限学习机的层集成网络结构。以极限学习机网络作为基学习器,构成两层集成网络,每层网络在构建时利用先分类,再从类中选优的思想同时考虑基学习器的准确性与多样性,其中第一层用以优化参数,第二层实现预测。对比实验结果表明,与基于多层感知器的层集成网络相比,该模型在提高预测准确度的同时将学习用时缩短了1-2个数量级。 展开更多
关键词 时间序列预测 极限学习机 集成学习 聚类 自助采样
在线阅读 下载PDF
基于k-means聚类和变分位鲁棒极限学习机的短期负荷预测方法 被引量:18
14
作者 林志坚 鲁迪 +3 位作者 林锐涛 王星华 许韩斌 彭显刚 《智慧电力》 北大核心 2019年第3期46-53,共8页
随着售电侧市场的逐步开放,集中式的供售电模式被打破,为获取更精确的区域短期负荷预测值,提出一种基于k-means聚类和变分位鲁棒极限学习机的短期负荷预测方法。首先利用传统的k-means聚类算法对历史电力负荷数据进行负荷模式的提取,获... 随着售电侧市场的逐步开放,集中式的供售电模式被打破,为获取更精确的区域短期负荷预测值,提出一种基于k-means聚类和变分位鲁棒极限学习机的短期负荷预测方法。首先利用传统的k-means聚类算法对历史电力负荷数据进行负荷模式的提取,获取相同用电行为的用户负荷曲线。然后采用变分位鲁棒极限学习机对不同类负荷曲线分别建立预测模型,最后叠加单个的预测值形成最终的预测结果。通过设定不同的分位值来模拟不同的预测场景,以此得到所有可能性的预测值,即实现变分位-多场景的VQR-ORELM灵活预测。为验证所提方法的有效性,采用2个实际案例进行仿真分析。结果表明,相对于支持向量机、BP神经网络、极限学习机模型、鲁棒极限学习机模型,所提模型在聚类前后预测精度始终最高,进一步验证了所提方法的优越性和灵活性。通过k-means聚类后,所有模型预测性能都有较大提高。 展开更多
关键词 K-MEANS聚类 变分位鲁棒极限学习机 短期负荷预测
在线阅读 下载PDF
基于集群负荷预测的主动配电网多目标优化调度 被引量:24
15
作者 刘新苗 李卓环 +4 位作者 曾凯文 刘嘉宁 李富盛 余涛 赖界亨 《电测与仪表》 北大核心 2021年第5期98-104,共7页
常规的配电网调度模式中,往往通过可控分布式电源、储能和柔性负荷来调节预测误差和实时波动,粗略地预测负荷值,这使得负荷预测往往不够精准,而且用可控分布式电源、柔性负荷或储能平衡配电网负荷波动,会造成较大的波动成本和备用成本... 常规的配电网调度模式中,往往通过可控分布式电源、储能和柔性负荷来调节预测误差和实时波动,粗略地预测负荷值,这使得负荷预测往往不够精准,而且用可控分布式电源、柔性负荷或储能平衡配电网负荷波动,会造成较大的波动成本和备用成本。对此提出一种基于集群负荷预测的主动配电网多目标优化调度方法。采用模糊聚类的方法,对负荷进行集群划分,利用极限学习机对负荷进行集群预测。基于预测值,先以有功调度成本最低进行日前调度,再在日前调度的基础上进行修正,以可控分布式出力修正量最小、储能出力修正量最小、柔性负荷修正量最小为目标进行实时调度。 展开更多
关键词 模糊聚类 极限学习机 日前调度 实时调度 多目标
在线阅读 下载PDF
基于ELM的局部空间信息的模糊C均值聚类图像分割算法 被引量:6
16
作者 陈凯 陈秀宏 《数据采集与处理》 CSCD 北大核心 2019年第1期100-110,共11页
极限学习机(Extreme learning machine,ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means,WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊... 极限学习机(Extreme learning machine,ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means,WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊C均值聚类算法的去噪声能力。基于极限学习机理论,对WFLICM进行改进优化,提出了基于ELM的局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means based on ELM,ELM-NKWFLICM)。该方法基于ELM特征映射技术,将原始数据通过ELM特征映射技术映射到高维ELM隐空间中,再用改进的新核局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information Cmeans,NKWFLICM)进行聚类。实验结果表明ELM-NKWFLICM算法具有比WFLICM算法更强的去噪声能力,且很好地保留了原图像的细节,算法在处理复杂非线性数据时更高效,同时克服了模糊聚类算法对模糊指数的敏感性问题。 展开更多
关键词 聚类算法 图像分割 模糊C均值算法 极限学习机
在线阅读 下载PDF
基于极限学习机与负荷密度指标法的空间负荷预测 被引量:11
17
作者 邵宇鹰 彭鹏 +1 位作者 张秋桥 王冰 《电力工程技术》 北大核心 2021年第1期86-91,共6页
空间负荷预测对有配电网的规划建设具有重要意义,为了提高配电网空间负荷预测的精度,文中提出基于极限学习机(ELM)的配电网空间负荷预测算法,采用粒子群优化(PSO)模型的参数。首先根据用地性质将负荷分类,再通过模糊C均值(FCM)算法对每... 空间负荷预测对有配电网的规划建设具有重要意义,为了提高配电网空间负荷预测的精度,文中提出基于极限学习机(ELM)的配电网空间负荷预测算法,采用粒子群优化(PSO)模型的参数。首先根据用地性质将负荷分类,再通过模糊C均值(FCM)算法对每一类负荷进行聚类分析,建立精细化的负荷密度指标体系。根据待预测地块的特性指标选取训练样本,代入ELM训练,提高预测精度。通过搜索的数据对实例进行仿真试验,通过对比未引入FCM算法的相对误差、未引入PSO算法的相对误差以及采用PSO-ELM算法的相对误差可得,文中提出的PSO-ELM算法具有较高精度,满足实际工程的要求。 展开更多
关键词 空间负荷预测 负荷密度指标法 粒子群优化(PSO)算法 极限学习机(ELM) 模糊C均值(FCM)算法
在线阅读 下载PDF
基于改进ABC和IDPC-MKELM的短期电力负荷预测 被引量:17
18
作者 狄曙光 刘峰 +3 位作者 孙建宇 冀超 董铎亮 蔄靖宇 《智慧电力》 北大核心 2022年第9期74-81,共8页
为提高受外部因素影响敏感的短期电力负荷预测精度,提出了一种基于改进ABC优化密度峰值聚类和多核极限学习机的短期电力负荷预测方法。构建融合特征提取、人工蜂群算法(ABC)、密度峰值聚类(DPC)和核极限学习机(KELM)的短期电力负荷预测... 为提高受外部因素影响敏感的短期电力负荷预测精度,提出了一种基于改进ABC优化密度峰值聚类和多核极限学习机的短期电力负荷预测方法。构建融合特征提取、人工蜂群算法(ABC)、密度峰值聚类(DPC)和核极限学习机(KELM)的短期电力负荷预测模型。针对ABC收敛效率不高的缺陷,设计新型蜜源搜索和蜜蜂进化方式,以提升改进ABC全局寻优能力;针对DPC截断距离与聚类中心人为设定的不足,定义邦费罗尼指数函数和聚类中心截断指标,并将改进的ABC应用于DPC参数优化过程,以实现DPC最佳聚类分析;针对KELM回归能力不强、参数选取难以确定的问题,设计多核加权KELM,并采用改进的ABC进行参数优化,以提高极限学习机预测精度。仿真结果表明,所提短期电力负荷预测方法更具有效性,平均误差低了约8.8%~39.8%。 展开更多
关键词 短期电力负荷预测 人工蜂群算法 密度峰值聚类 核极限学习机 特征提取 预测精度
在线阅读 下载PDF
基于膜聚类的改进极限学习机在短期负荷预测中的应用 被引量:2
19
作者 杨云莹 王军 +2 位作者 彭宏 侯萱 李佳龙 《水电能源科学》 北大核心 2019年第12期181-184,165,共5页
针对历史数据样本存在无效性影响预测精度和极限学习机的输出随机性、稳定性较差的问题,提出了一种模糊膜聚类算法与改进极限学习机相结合的组合预测方法。考虑负荷自身特征、天气温度及日类型等指标,利用模糊膜聚类算法选取出与预测日... 针对历史数据样本存在无效性影响预测精度和极限学习机的输出随机性、稳定性较差的问题,提出了一种模糊膜聚类算法与改进极限学习机相结合的组合预测方法。考虑负荷自身特征、天气温度及日类型等指标,利用模糊膜聚类算法选取出与预测日具有相似特性指标的负荷数据作为负荷预测日的输入样本,运用经过粒子群算法及隐含层神经元个数遍历法改进后的极限学习机进行预测。试验结果表明,所提方法对两个地区的某日负荷进行预测时降低了预测误差,提高了短期负荷预测的准确性。 展开更多
关键词 短期负荷预测 模糊聚类 膜计算 粒子群算法 极限学习机
在线阅读 下载PDF
基于优化聚类的组合风速短期预测 被引量:1
20
作者 陈记牢 栗惠惠 +2 位作者 李富强 郝飞 张圆美 《可再生能源》 CAS 北大核心 2017年第12期1841-1846,共6页
准确的风功率预测对电力系统安全、稳定运行具有重要意义,而风速预测是风功率预测的关键。文章提出一种基于优化模糊C均值(Optimal Fuzzy C means,OFCM)聚类的组合风速短期预测方法。首先,采用模拟退火遗传算法优化模糊C均值聚类算法的... 准确的风功率预测对电力系统安全、稳定运行具有重要意义,而风速预测是风功率预测的关键。文章提出一种基于优化模糊C均值(Optimal Fuzzy C means,OFCM)聚类的组合风速短期预测方法。首先,采用模拟退火遗传算法优化模糊C均值聚类算法的初始聚类中心;其次,基于优化模糊C均值聚类算法将初始风速属性样本数据进行分组;再根据不同风速样本组,运用极限学习机(Extremely Learning Machine,ELM)构建组合风速预测模型;最后,通过风速实测值与预测值的对比,验证了该方法的可行性。 展开更多
关键词 风速预测 模拟退化遗传算法 FCM聚类 极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部