期刊文献+
共找到2,152篇文章
< 1 2 108 >
每页显示 20 50 100
基于改进YOLOv11与GWO-ELM的食品生产线黄桃自动分级方法 被引量:1
1
作者 彭永杰 赵良军 龙绪明 《食品与机械》 北大核心 2025年第5期89-97,共9页
[目的]提高食品生产线黄桃自动分级方法的准确率和效率。[方法]在黄桃自动分级系统(机器视觉和高光谱技术)的基础上,提出一种融合改进YOLOv11与改进极限学习机的黄桃品质自动检测方法。外部品质图像通过CMOS传感器相机进行采集,通过改进... [目的]提高食品生产线黄桃自动分级方法的准确率和效率。[方法]在黄桃自动分级系统(机器视觉和高光谱技术)的基础上,提出一种融合改进YOLOv11与改进极限学习机的黄桃品质自动检测方法。外部品质图像通过CMOS传感器相机进行采集,通过改进YOLOv11模型识别缺陷,并结合果型指数与色泽判定外部品质。内部品质则通过高光谱仪采集,经特征筛选后,输入改进灰狼算法优化的极限学习机模型中检测可溶性固形物和硬度指标判定内部品质。结合外部品质和内部品质对黄桃进行分级。通过试验对其性能进行验证。[结果]试验方法可以实现食品生产线黄桃内外品质的有效检测,综合内部品质具有较高的分级准确率和效率,分级准确率大于95.00%,平均分级时间小于0.3 s。[结论]将机器视觉、高光谱技术以及智能算法相结合,可实现食品品质的快速无损检测。 展开更多
关键词 食品生产线 黄桃 自动分级 机器视觉 高光谱技术 YOLOv11 极限学习机
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法 被引量:1
2
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:2
3
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于EWT-WOA-ELM的电气线路发光连接诊断方法
4
作者 吕亮 杨鹏涛 +2 位作者 朱恺 徐阳 汲胜昌 《消防科学与技术》 北大核心 2025年第10期1547-1559,共13页
接触不良是低压线路中常见的火灾诱因,接触不良达到一定高温后会引发电气线路发生发光连接故障,具有极大的火灾隐患。为了对电气线路发光连接故障进行诊断,提出了基于经验小波变换(EWT)的时频域特征提取方法,并基于融合特征集,使用鲸鱼... 接触不良是低压线路中常见的火灾诱因,接触不良达到一定高温后会引发电气线路发生发光连接故障,具有极大的火灾隐患。为了对电气线路发光连接故障进行诊断,提出了基于经验小波变换(EWT)的时频域特征提取方法,并基于融合特征集,使用鲸鱼优化算法(WOA)获取了极限学习机(ELM)的最优输入权值和隐含阈值,并提出了基于EWT-WOA-ELM的神经网络模型。结果表明:模型的最优隐含层神经元个数为18,本模型交叉验证平均准确率和平均交叉熵损失分别为96%和0.6239,实现了不同工况下对正常状态、发光连接阶段前期和末期的故障诊断。采取不同试验室的数据使用本模型进行验证,发现模型识别状态与实际状态一致。 展开更多
关键词 发光连接 故障诊断 机器学习 极限学习机
在线阅读 下载PDF
带状态检测机制的ELM-UKF算法估计锂电池SOC策略
5
作者 谈发明 赵俊杰 《汽车技术》 北大核心 2025年第2期46-54,共9页
为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练... 为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练ELM模型,将训练成功的ELM模型用于在线补偿UKF的SOC估计误差,进而实现估计偏差的实时修正;其次,算法针对ELM模型预测输出设计了状态检测机制,以此减小ELM模型预测输出过拟合对SOC估计波形平滑度的影响。试验结果表明,相较于单一类型的算法,所提出的组合算法具有良好的鲁棒性和泛化性,能有效提升锂电池SOC的估计效果。 展开更多
关键词 荷电状态 无迹卡尔曼滤波 极限学习机 状态检测 精度
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
6
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于IVYA-FMD和EELM-Yager的轴承小样本故障诊断模型 被引量:1
7
作者 王恒迪 王豪馗 +2 位作者 陈鹏 吴升德 马盈丰 《机电工程》 北大核心 2025年第6期1093-1101,共9页
针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解... 针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解的精确度,并采用最小残差指数(REI)作为最优模态分量的选取准则,从最优模态分量中提取了故障信号时域、频域及熵值的关键特征;然后,将所提取的特征输入EELM中进行了故障识别;最后,采用Yager加权平均规则对EELM的分类结果进行了融合,得到了综合故障诊断结果。研究结果表明:IVYA-FMD在信号处理过程中,具有优秀的特征提取和抗干扰能力,可有效提取原始信号的故障特征;IVYA-FMD和EELM-Yager模型在实验数据中,训练集与测试集按照8∶2的比例进行分割时的准确率达到99.12%;当训练集与测试集按照2:8的比例进行分割时,该方法在实验数据中的准确率高达92.5%,在CWRU数据集和SEU数据集中的准确率均超过96.8%。与其他智能诊断模型相比,IVYA-FMD和EELM-Yager在小样本滚动轴承故障诊断领域展现出显著的可行性和优越性。 展开更多
关键词 特征模态分解 常春藤算法 集成极限学习机 Yager加权平均 小样本故障诊断 滚动轴承
在线阅读 下载PDF
基于二次分解、LSTM-ELM和误差修正的空气质量指数预测模型 被引量:1
8
作者 周建国 秦远 周路明 《安全与环境学报》 北大核心 2025年第1期322-334,共13页
精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法... 精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法。首先,采用改良的自适应白噪声完全集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和样本熵(Sample Entropy,SE)对原始AQI序列进行分解并重构,获得高频、中频和低频3个频率分量。其次,利用经过北方苍鹰算法(Northern Goshawk Optimization,NGO)优化的变分模态分解(Variational Mode Decomposition,VMD)对高频分量进行二次分解,进一步降低其复杂度。再次,引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)对长短期记忆网络(Long Short-Term Memory,LSTM)和极限学习机(Extreme Learning Machine,ELM)的关键参数进行优化,同时利用INFO-LSTM预测高频分量分解后的子序列,进而利用INFO-ELM分别预测中、低频分量,并将所得预测结果进行线性叠加。最后,利用NGO-VMD和INFO-ELM对误差序列进行分解和预测,并对初次预测结果进行修正,得到最终的AQI预测值。研究选取北京、上海和成都3个典型城市为例进行实证分析,并对比了7个对照试验,发现基于二次分解、LSTM-ELM和误差修正的模型具有最高的预测精度。该模型可为治理空气污染提供理论和技术上的帮助。 展开更多
关键词 环境工程学 空气质量指数预测 二次分解 长短期记忆网络 极限学习机 向量加权平均算法 误差修正模型
在线阅读 下载PDF
基于PSO-ELM的不同温湿度条件下叶丝干燥入口水分控制研究
9
作者 李自娟 李宜馨 +7 位作者 吕萱 赵海洋 孙朔 冯子贤 高杨 赵力源 呼守宇 陈娇娇 《中国烟草学报》 北大核心 2025年第3期60-69,共10页
【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下... 【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下叶丝干燥入口水分分类模型,并根据分类模型选取最佳工艺参数。【结果】(1)全年可分为4、5月为中温低湿,6、7、8月为高温高湿,9、10月为中温中湿,其它为低温中湿4个区间,且不同温湿度区间下叶丝干燥入口水分存在显著差异;(2)不同温湿度区间下叶丝干燥入口水分离散化处理后分为劣品质(其它)、中等品质(水分偏低μ-1.5σ~μ-0.5σ)、高品质(μ-0.5σ~μ+0.5σ)和中等品质(水分偏高μ+0.5σ~μ+1.5σ)4个品质类别;(3)不同温湿度区间干燥入口水分分类模型PSO-ELM效果均优于GS-SVM和GS-RF,其各温湿度区间的准确率、精确度和召回率均在90%以上,F1分数均在0.90以上;(4)PSO-ELM模型选取出最大化高品质入口水分的工艺参数运用于实际生产后,不同温湿度条件下的叶丝干燥入口水分标准差均降低了40%~50%,高品质入口水分的占比显著增高,其中中温低湿和低温中湿区的占比分别增加了38.9%和60%。 展开更多
关键词 叶丝干燥 温湿度 粒子群 极限学习机
在线阅读 下载PDF
基于NSWOA-ELM算法的水稻冠层氮素含量反演方法
10
作者 于丰华 曹慧妮 +4 位作者 金忠煜 王楠 李世隆 孙道明 许童羽 《农业机械学报》 北大核心 2025年第7期532-540,共9页
以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于... 以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于多目标鲸鱼优化算法(Non-dominated Sorting whale optimization algorithm,NSWOA)优化的极限学习机(Extreme learning machine,ELM)模型,用于反演水稻冠层氮素含量。利用误差反向传播神经网络(Back propagation neural network,BPNN)和ELM模型,与NSWOA优化后的ELM模型进行对比。结果表明,SPA算法筛选出的特征波长为400、440、487、542、589、660、675、739、766、808、878、912、949 nm。使用筛选后的特征波长反射率构建NSWOA-ELM水稻冠层氮素含量反演模型效果最好,训练集R^(2)为0.859 3,RMSE为0.200 2 mg/g;验证集R^(2)为0.854 3,RMSE为0.206 9 mg/g。与BP神经网络和ELM模型相比,NSWOA-ELM在预测能力和模型稳定性方面具有显著优势。综上,基于NSWOA-ELM的水稻冠层氮素含量反演模型能够为水稻生长状况的描述及精准施肥提供可靠支持。 展开更多
关键词 水稻冠层 氮素 高光谱 多目标鲸鱼优化算法 极限学习机
在线阅读 下载PDF
基于IEO-MKELM模型的重整产品辛烷值软测量方法
11
作者 陈晓彦 赵超 +2 位作者 付斌 李卫东 范克威 《石油与天然气化工》 北大核心 2025年第4期131-139,共9页
目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高... 目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。结果利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10^(−3)数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。结论基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。 展开更多
关键词 IEO-MKelm 平衡优化算法 多核极限学习机 辛烷值 软测量 预测模型
在线阅读 下载PDF
基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计
12
作者 陈峥 多功东 +3 位作者 申江卫 沈世全 刘昱 魏福星 《储能科学与技术》 北大核心 2025年第6期2476-2487,共12页
为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电... 为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电过程中的电压-容量数据进行拟合,提取峰电压、峰值和峰面积等健康特征,并利用灰狼优化算法完成模型参数识别,从而有效提升了特征提取质量和鲁棒性。其次,采用变分模态分解技术对健康状态信号进行多尺度分解,将模态分量作为独立子模型的输入,捕捉不同频域的关键特性,降低了信号混叠和噪声影响。然后,结合灰狼优化算法对核极限学习机模型的关键参数进行优化,显著提高了非线性拟合能力和估计精度。最后,通过不同训练量、不同估计模型对比和多电池数据的验证,全面评估模型性能。实验结果表明,本工作提出的算法在仅使用100次循环数据的情况下,即可实现高精度健康状态估计,平均绝对误差为0.9751%,最大误差为1.9340%,同时表现出良好的鲁棒性和泛化能力。 展开更多
关键词 锂离子电池 健康状态 容量增量分析 变分模态分解 灰狼优化 核极限学习机
在线阅读 下载PDF
基于GGA-ELM神经网络的飞行器地磁定位方法
13
作者 邹维宝 常超飞 +3 位作者 李启栋 刘恩铭 韩大恒 彭鑫 《中国惯性技术学报》 北大核心 2025年第10期1008-1015,共8页
在地磁导航定位中应用人工智能时,传统神经网络面临训练效率低和易陷入局部最优等挑战。针对这些问题,提出了一种基于改进遗传算法优化极限学习机神经网络(GGA-ELM)的飞行器地磁定位方法。通过在传统遗传算法中引入精英反向学习策略,优... 在地磁导航定位中应用人工智能时,传统神经网络面临训练效率低和易陷入局部最优等挑战。针对这些问题,提出了一种基于改进遗传算法优化极限学习机神经网络(GGA-ELM)的飞行器地磁定位方法。通过在传统遗传算法中引入精英反向学习策略,优化后的ELM网络提高了训练效率,有效降低了陷入局部最优的风险。实验结果表明:与CNN、BiLSTM和LSTM模型相比,GGA-ELM模型的训练时间显著减小,此外,GGA-ELM模型的定位误差约为4 m,定位时间为0.003 s。与ELM、GAELM、CNN、BiLSTM、RBF及LSTM模型相比,GGA-ELM模型方法的定位精度分别提高了86.6%、115.9%、417.8%、187.6%、216.5%、107.5%;定位时间最多减小了0.947 s。所提方法在航磁数据上的定位稳定性更好,准确性更高。 展开更多
关键词 飞行器 遗传算法 极限学习机 地磁定位 航磁数据
在线阅读 下载PDF
基于数据增强和优化DHKELM的短期光伏功率预测
14
作者 郭利进 马粽阳 胡晓岩 《太阳能学报》 北大核心 2025年第8期463-471,共9页
针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法... 针对不同气象条件数据质量差异较大且光伏功率呈高波动性难以预测等问题,提出添加随机噪声的数据增强方法(DA)和改进的神经网络组合模型。首先利用谱聚类算法将光伏数据按不同气象条件进行分类,随后通过添加与输入同形状的随机噪声方法提升数据集的规模与质量。针对深度混合核极限学习机(DHKELM)超参数多等问题,提出融合佳点集初始化、黄金正弦更新策略、非线性扰动和最优个体自适应扰动的改进鹈鹕优化算法(IPOA)对其超参数寻优。最后以青海共和县光伏园内某电站数据为例,结果表明基于数据增强的改进鹈鹕算法优化深度混合核极限学习机(DA-IPOA-DHKELM)模型在不同天气、季节条件下预测误差最小,拟合度均能达到90%以上,改进模型预测精度高、算法适用性强。 展开更多
关键词 光伏功率 预测 聚类分析 数据增强 深度混合核极限学习机 改进算法
在线阅读 下载PDF
基于RPCA-GELM数据驱动的保护测量回路误差评估
15
作者 李振兴 龚世玉 《电力系统保护与控制》 北大核心 2025年第8期24-33,共10页
保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive princip... 保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive principal component analysis and extreme learning machine optimized by grey wolf optimization,RPCA-GELM)数据驱动的保护测量回路误差评估方法。首先基于电力系统正常运行下历史数据与实时数据,应用RPCA技术在线更新主元特征模型以缩短评估时间,进一步引入4种统计算法生成4类误差监测特征量,构建误差综合评判方法进行特征优选,提升误差评估准确率。然后针对模型评估精度取决于关键参数C、σ,引入国际无限折叠混沌映射策略对灰狼算法进行优化,以提升参数寻优精度和收敛速度,在此基础上结合ELM算法提出了基于GELM的保护测量回路误差评估方法。最后通过多组对比实验验证了所提方法能实现模型性能优化,且相对其他方法有效提升了保护测量回路误差评估准确率与精度。 展开更多
关键词 保护测量回路 误差评估 递推主元分析 灰狼算法 极限学习机
在线阅读 下载PDF
基于二次分解与MAML-MHA-DELM的电力行业碳排放预测模型研究
16
作者 张新生 张红文 聂达文 《安全与环境学报》 北大核心 2025年第9期3386-3399,共14页
为了有效预测电力行业碳排放趋势,解决在碳排放预测中遇到的非线性、复杂性等问题,研究提出了一种新型电力行业碳排放预测模型。该模型基于二次分解方法,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decompos... 为了有效预测电力行业碳排放趋势,解决在碳排放预测中遇到的非线性、复杂性等问题,研究提出了一种新型电力行业碳排放预测模型。该模型基于二次分解方法,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与变分模态分解(Variational Mode Decomposition,VMD),以处理数据的非线性和复杂性。此外,采用模型无关元学习(Model-Agnostic Meta-Learning,MAML)优化结合多头注意力机制(Multi-Head Attention,MHA)增强特征提取的分布式极限学习机(Distributed Extreme Learning Machine,DELM)构建预测框架,以提高模型的准确性和泛化性能。首先,根据政府间气候变化专门委员会(The Intergovernmental Panel on Climate Change,IPCC)中方法计算电力行业化石燃料在1991—2022年的碳排放情况;其次,采用广义灰色关联分析(Grey Relation Analysis,GRA)与皮尔逊相关系数(Pearson Correlation Coefficient,Pearson)对影响因素进行筛选,并筛选出一次能源生产总量、城镇化率和电力行业固定投资等11个相关性影响因素;再次,使用CEEMDAN-VMD二次分解将因变量电力行业碳排放量分解成4个多频模态,并将4个模态分别代入经MAML-MHA算法优化的DELM模型进行预测;最后,将各分解序列的预测值进行逆归一化相加,即可得到电力行业碳排放预测值,并进行消融试验。结果显示,CEEMDAN-VMD-MAML-MHA-DELM模型性能最优,其均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)及决定系数(R^(2))分别为0.3494万t、0.3763万t、0.8383%和0.9893。这表明该模型在电力行业碳排放预测方面效果显著,能为电力行业低碳发展提供一定参考。 展开更多
关键词 环境工程学 自适应噪声完备集合经验模态分解 变分模态分解 分布式极限学习机
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价 被引量:2
17
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子群优化算法(PSO) 极限学习机(elm) 水质评价
在线阅读 下载PDF
改进Sine混沌映射CO-ELM锂离子电池RUL预测 被引量:1
18
作者 王鹏 周俊 +1 位作者 伍星 刘韬 《储能科学与技术》 北大核心 2025年第4期1603-1616,共14页
针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优... 针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优化算法对ELM模型参数进行优化,并使用改进的Sine混沌映射优化猎豹初始种群;最后采用NASA卓越预测中心提供的电池数据集和牛津大学提供的电池老化数据集对该模型有效性和准确性进行验证。通过原始ELM模型进行多次实验,得到该数据集进行预测的最佳训练数据量以及最佳神经元数量;利用所提出的SCO-ELM模型进行电池的剩余使用寿命预测,对比原始ELM与遗传算法优化ELM模型,均方根误差在0.004以下,且具有较快的预测时间;之后进行电池全周期寿命预测,预测精度平均提升40%,预测速度提升78%以上;使用B0005号电池训练结果对同类型电池组进行预测,预测精度平均提升25%,预测速度提升75%以上。实验结果表明,所提方法具有预测准确度高、预测速度快、操作复杂度低和模型稳定等优势。 展开更多
关键词 锂离子电池 剩余使用寿命 极限学习机 猎豹优化 混沌映射
在线阅读 下载PDF
基于CLD-COA-ELM的光伏阵列故障诊断方法研究 被引量:5
19
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进长鼻浣熊优化算法
在线阅读 下载PDF
Constrained voting extreme learning machine and its application 被引量:5
20
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(elm) majority voting ensemble method sample based learning superheat degree(SD)
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部