期刊文献+
共找到15,922篇文章
< 1 2 250 >
每页显示 20 50 100
Steam Flooding after Steam Soak in Heavy Oil Reservoirs through Extended-reach Horizontal Wells 被引量:1
1
作者 Ning Zhengfu Liu Huiqing Zhang Hongling 《Petroleum Science》 SCIE CAS CSCD 2007年第2期71-74,共4页
This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special pac... This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special packers within the long completion horizontal interval to establish an injection zone and a production zone. This method can also be used in steam flooding after steam soak through a horizontal well. Simulation results showed that it was desirable to start steam flooding after six steam soaking cycles and at this time the oil/steam ratio was 0.25 and oil recovery efficiency was 23.48%. Steam flooding performance was affected by separation interval and steam injection rate. Reservoir numerical simulation indicated that maximum oil recovery would be achieved at a separation section of 40-50 m at steam injection rate of 100-180 t/d; and the larger the steam injection rate, the greater the water cut and pressure difference between injection zone and production zone. A steam injection rate of 120 t/d was suitable for steam flooding under practical injection-production conditions. All the results could be useful for the guidance of steam flooding projects. 展开更多
关键词 Heavy oil horizontal well steam soak steam flooding single well injection and production optimized design
在线阅读 下载PDF
Integrated design and control technology of liner completion and drilling for horizontal wells
2
作者 GAO Deli XIAN Baoan BI Yansen 《Petroleum Exploration and Development》 SCIE 2024年第4期1009-1021,共13页
Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of... Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells. 展开更多
关键词 horizontal well liner completion and drilling double tubular strings liner differential rotary drilling tool face control horizontal extension limit
在线阅读 下载PDF
THE EXISTENCE OF PSEUDOHARMONIC MAPS FOR SMALL HORIZONTAL ENERGY
3
作者 Biqiang ZHAO 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1955-1964,共10页
In this paper,we consider pseudoharmonic heat flow with small initial horizontal energy and give the existence of pseudoharmonic maps from closed pseudo-Hermitian manifolds into closed Riemannian manifolds.
关键词 pseudoharmonic map pseudoharmonic heat flow small horizontal energy
在线阅读 下载PDF
Transportation and sealing pattern of the temporary plugging ball at the spiral perforation in the horizontal well section
4
作者 Qing-Hai Hu Wan Cheng +2 位作者 Zun-Cha Wang Yu-Zhao Shi Guang-Liang Jia 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3288-3297,共10页
Multistage fracturing of horizontal wells is a critical technology for unconventional oil and gas reservoir stimulation. Ball-throwing temporary plugging fracturing is a new method for realizing uniform fracturing alo... Multistage fracturing of horizontal wells is a critical technology for unconventional oil and gas reservoir stimulation. Ball-throwing temporary plugging fracturing is a new method for realizing uniform fracturing along horizontal wells and plays an important role in increasing oil and gas production. However,the transportation and sealing law of temporary plugging balls(TPBs) in the perforation section of horizontal wells is still unclear. Using COMSOL computational fluid dynamics and a particle tracking module, we simulate the transportation process of TPBs in a horizontal wellbore and analyse the effects of the ball density, ball diameter, ball number, fracturing fluid injection rate, and viscosity on the plugging efficiency of TPB transportation. This study reveals that when the density of TPBs is close to that of the fracturing fluid and a moderate diameter of the TPB is used, the plugging efficiency can be substantially enhanced. The plugging efficiency is greater when the TPB number is close to twice the number of perforations and is lower when the number of TPBs is three times the number of perforations.Adjusting the fracturing fluid injection rate from low to high can control the position of the TPBs,improving plugging efficiency. As the viscosity of the fracturing fluid increases, the plugging efficiency of the perforations decreases near the borehole heel and increases near the borehole toe. In contrast, the plugging efficiency of the central perforation is almost unaffected by the fracturing fluid viscosity. This study can serve as a valuable reference for establishing the parameters for temporary plugging and fracturing. 展开更多
关键词 Temporary plugging ball horizontal well Multistage fracturing Spiral perforation Numerical simulation
在线阅读 下载PDF
Multistage hydraulic fracturing of a horizontal well for hard roof related coal burst control:Insights from numerical modelling to field application
5
作者 Jiaxin Zhuang Zonglong Mu +4 位作者 Wu Cai Hu He Lee J.Hosking Guojun Xi Biao Jiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1095-1114,共20页
Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of c... Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering. 展开更多
关键词 Coal burst Multistage hydraulic fracturing of horizontal wells Mining-induced seismicity Mining-induced stress Effectiveness evaluation
在线阅读 下载PDF
Effect of perforation density distribution on production of perforated horizontal wellbore
6
作者 KAREEM Hasanain J. HASINI Hasril ABDULWAHID Mohammed A. 《Petroleum Exploration and Development》 SCIE 2024年第2期464-475,共12页
To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perf... To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perforation density distribution conditions(i.e.increasing the perforation density at inlet and outlet sections respectively).The simulation results are compared with experimental results to verify the reliability of the numerical simulation method.The behaviors of the total pressure drop,superficial velocity of air-water two-phase flow,void fraction,liquid film thickness,air production and liquid production that occur with various flow patterns are investigated under two perforation density distribution conditions based on the numerical model.The total pressure drop,superficial velocity of the mixture and void fraction increase with the air flow rate when the water flow rate is constant.The liquid film thickness decreases when the air flow rate increases.The liquid and air productions increase when the perforation density increases at the inlet section compared with increasing the perforation density at the outlet section of the perforated horizontal wellbore.It is noted that the air production increases with the air flow rate.Liquid production increases with the bubble flow and begins to decrease at the transition point of the slug-stratified flow,then increases through the stratified wave flow.The normalized liquid flux is higher when the perforation density increases at the inlet section,and increases with the radial air flow rate. 展开更多
关键词 horizontal wellbore two-phase flow pattern perforation density wellbore pressure drop void fraction production performance
在线阅读 下载PDF
Experimental study on permeability evolution of deep high-stressed coal under major horizontal stress unloading paths
7
作者 Chao Liu Jiahao Zhang +3 位作者 Songwei Wu Jinghua Qi Beichen Yu Liang Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1495-1508,共14页
Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on s... Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal. 展开更多
关键词 True triaxial stress path Constant bulk stress horizontal stress Effective stress coefficient of permeability Slippage effect
在线阅读 下载PDF
Feasibility of CO_(2)storage and enhanced gas recovery in depleted tight sandstone gas reservoirs within multi-stage fracturing horizontal wells
8
作者 Er-Meng Zhao Zhi-Jun Jin +2 位作者 Gen-Sheng Li Kai-Qiang Zhang Yue Zeng 《Petroleum Science》 CSCD 2024年第6期4189-4203,共15页
Injecting CO_(2)when the gas reservoir of tight sandstone is depleted can achieve the dual purposes of greenhouse gas storage and enhanced gas recovery(CS-EGR).To evaluate the feasibility of CO_(2)injection to enhance... Injecting CO_(2)when the gas reservoir of tight sandstone is depleted can achieve the dual purposes of greenhouse gas storage and enhanced gas recovery(CS-EGR).To evaluate the feasibility of CO_(2)injection to enhance gas recovery and understand the production mechanism,a numerical simulation model of CS-EGR in multi-stage fracturing horizontal wells is established.The behavior of gas production and CO_(2)sequestration is then analyzed through numerical simulation,and the impact of fracture parameters on production performance is examined.Simulation results show that the production rate increases significantly and a large amount of CO_(2)is stored in the reservoir,proving the technical potential.However,hydraulic fractures accelerate CO_(2)breakthrough,resulting in lower gas recovery and lower CO_(2)storage than in gas reservoirs without fracturing.Increasing the length of hydraulic fractures can significantly increase CH4production,but CO_(2)breakthrough will advance.Staggered and spaced perforation of hydraulic fractures in injection wells and production wells changes the fluid flow path,which can delay CO_(2)breakthrough and benefit production efficiency.The fracture network of massive hydraulic fracturing has a positive effect on the CS-EGR.As a result,CH4production,gas recovery,and CO_(2)storage increase with the increase in stimulated reservoir volume. 展开更多
关键词 Tight sandstone gas reservoir CO_(2)geological storage Enhanced gas recovery Multi-stage fracturing horizontal well Numerical simulation
在线阅读 下载PDF
Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation 被引量:11
9
作者 史阳 杨坤德 +1 位作者 杨益新 马远良 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期193-201,共9页
The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on elect... The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consis- tent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean. 展开更多
关键词 horizontal inhomogeneity evaporation duct electromagnetic wave propagation evaporation duct experiment
在线阅读 下载PDF
Research into magnetic guidance technology for directional drilling in SAGD horizontal wells 被引量:10
10
作者 Gao Deli Diao Binbin +1 位作者 Wu Zhiyong Zhu Yu 《Petroleum Science》 SCIE CAS CSCD 2013年第4期500-506,共7页
SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the r... SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the reservoir.By studying the attitude of the downhole probe tube and the production well trajectory,an algorithm is proposed for eliminating ferromagnetic interference while drilling injection wells.A high accuracy filter circuit has been designed to correct the detected magnetic signals,which are ultra-weak,frequency-instable,and narrow-band.The directional drilling magnetic guidance system(DD-MGS) has been developed by integrating these advanced techniques.It contains a sub-system for the ranging calculation software,a magnetic source,a downhole probe tube and a sub-system for collecting & processing the detected signals.The DD-MGS has succeeded in oilfield applications.It can guide the directional drilling trajectory not only in the horizontal section but also in the build section of horizontal injection wells.This new technology has broad potential applications. 展开更多
关键词 Heavy oil SAGD horizontal wells directional drilling magnetic guidance system
在线阅读 下载PDF
The critical rate of horizontal wells in bottom-water reservoirs with an impermeable barrier 被引量:7
11
作者 Yue Ping Du Zhimin +1 位作者 Chen Xiaofan Liang Baosheng 《Petroleum Science》 SCIE CAS CSCD 2012年第2期223-229,共7页
Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil fo... Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells. 展开更多
关键词 horizontal well bottom-water reservoir barriers critical rate cresting
在线阅读 下载PDF
Ground response to high horizontal stresses during longwall retreat and its implications for longwall headgate support 被引量:6
12
作者 Peter Zhang Dave Gearhart +3 位作者 Mark Van Dyke Daniel Su Essie Esterhuizen Berk Tulu 《International Journal of Mining Science and Technology》 EI CSCD 2019年第1期27-33,共7页
Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to... Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to high horizontal stress in the longwall headgate and the requirements for supplemental roof support. In this study, a longwall headgate under high horizontal stress was instrumented to monitor stress change in the pillars, deformations in the roof, and load in the cable bolts. The conditions in the headgate were monitored for about six months as the longwall face passed by the instrumented site.The roof behavior in the headgate near the face was carefully observed during longwall retreat.Numerical modeling was performed to correlate the modeling results with underground observation and instrumentation data and to quantify the effect of high horizontal stress on roof stability in the longwall headgate. This paper discusses roof support requirements in the longwall headgate under high horizontal stress in regard to the pattern of supplemental cable bolts and the critical locations where additional supplemental support is necessary. 展开更多
关键词 LONGWALL MINING LONGWALL headgate High horizontal stress Supplemental SUPPORT
在线阅读 下载PDF
Stress redistribution in multi-stage hydraulic fracturing of horizontal wells in shales 被引量:7
13
作者 Yi-Jin Zeng Xu Zhang Bao-Ping Zhang 《Petroleum Science》 SCIE CAS CSCD 2015年第4期628-635,共8页
Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. T... Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. The initiation and propagation of hydraulic fractures will cause stress redistribution and may activate natural fractures in the reservoir. Due to the limitation of the analytical method in calculation of induced stresses, we propose a numerical method, which incorporates the interaction of hydraulic fractures and the wellbore, and analyzes the stress distri- bution in the reservoir under different stage spacing. Simulation results indicate the following: (1) The induced stress was overestimated from the analytical method because it did not take into account the interaction between hydraulic fractures and the horizontal wellbore. (2) The hydraulic fracture had a considerable effect on the redis- tribution of stresses in the direction of the horizontal wellbore in the reservoir. The stress in the direction per- pendicular to the horizontal wellbore after hydraulic frac- turing had a minor change compared with the original in situ stress. (3) Stress interferences among fractures were greatly connected with the stage spacing and the distance from the wellbore. When the fracture length was 200 m, and the stage spacing was 50 m, the stress redistribution due to stage fracturing may divert the original stress pat- tern, which might activate natural fractures so as to generate a complex fracture network. 展开更多
关键词 Shale gas - horizontal well Multi-stagefracturing Complex fracture Stage spacing - Inducedstress
在线阅读 下载PDF
Optimization of perforation distribution for horizontal wells based on genetic algorithms 被引量:4
14
作者 Wang Zhiming Wei Jianguang +2 位作者 Zhang Jian Gong Bin Yan Haiyun 《Petroleum Science》 SCIE CAS CSCD 2010年第2期232-238,共7页
Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimi... Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimization of perforating parameters in partitioned sections in horizontal intervals helps homogenize the inflow from the reservoir and thus is critically important for enhanced oil recovery. This paper derives a coupled reservoir-wellbore flow model based on inflow controlling theory. Genetic algorithms are applied to solving the model as they excel in obtaining the global optimum of discrete functions. The optimized perforating strategy applies a low perforation density in high- permeability intervals and a high perforation density in low-permeability intervals. As a result, the inflow profile is homogenized and idealized. 展开更多
关键词 Well completion perforation optimization genetic algorithms PARTITION horizontal well
在线阅读 下载PDF
Productivity analysis of horizontal wells intercepted by multiple finite-conductivity fractures 被引量:7
15
作者 Wang Xiaodong Li Guanghe Wang Fei 《Petroleum Science》 SCIE CAS CSCD 2010年第3期367-371,共5页
Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horiz... Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horizontal wells have been presented in the literature. With such methods, however, it is still difficult to obtain an accurate result. This paper firstly presents the dimensionless conductivity theory of vertical fractures. Then models for calculating the equivalent wellbore radius and the skin factor due to flow convergence to the well bore are proposed after analyzing the steady-state flow in porous reservoirs. By applying the superposition principle to the pressure drop, a new method for evaluating the productivity of horizontal wells intercepted by multiple finite-conductivity fractures is developed. The influence of fracture conductivity and fracture half length on the horizontal well productivity is quantitatively analyzed with a synthetic case. Optimum fracture number and fracture space are further discussed in this study. The results prove that the method outlined here should be useful to design optimum fracturing of horizontal wells. 展开更多
关键词 Production rate analysis fractured horizontal wells finite-conductivity vertical fractures fracturing design optimization
在线阅读 下载PDF
UNIVERSAL INEQUALITIES FOR A HORIZONTALLAPLACIAN VERSION OF THE CLAMPED PLATE PROBLEM ON CARNOT GROUP 被引量:2
16
作者 杜锋 吴传喜 +1 位作者 李光汉 夏昌玉 《Acta Mathematica Scientia》 SCIE CSCD 2017年第5期1536-1544,共9页
In this paper, we investigate a horizontal Laplacian version of the clamped plate problem on Carnot groups and obtain some universal inequalities. Furthermore, for the lower order eigenvalues of this eigenvalue proble... In this paper, we investigate a horizontal Laplacian version of the clamped plate problem on Carnot groups and obtain some universal inequalities. Furthermore, for the lower order eigenvalues of this eigenvalue problem on carnot groups, we also give some universal inequalities. 展开更多
关键词 EIGENVALUE universal inequality horizontal Laplacian Carnot group
在线阅读 下载PDF
A novel steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs 被引量:3
17
作者 Zhang Liehui Zhao Yulong Liu Zhibin 《Petroleum Science》 SCIE CAS CSCD 2011年第1期63-69,共7页
It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne... It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells. 展开更多
关键词 horizontal well point-source function bottom water driver gas reservoir steady-state productivity
在线阅读 下载PDF
Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt 被引量:5
18
作者 Ahmed Mohamed Semeida 《Journal of Modern Transportation》 2014年第1期20-29,共10页
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ... Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable. 展开更多
关键词 Artificial neural networks horizontal curve Multi-lane highways Operating speed Prediction models Regression models Roadway factors
在线阅读 下载PDF
A causation mechanism for coal bursts during roadway development based on the major horizontal stress in coal:Very specific structural geology causing a localised loss of effective coal confinement and Newton’s second law 被引量:4
19
作者 Russell Frith Guy Reed Aaron Jones 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期39-47,共9页
In 2017,one of the international authorities on coal bursts,Mark Christopher,published a paper entitled"Coal bursts that occur during development:A rock mechanics enigma",in which several relevant technical ... In 2017,one of the international authorities on coal bursts,Mark Christopher,published a paper entitled"Coal bursts that occur during development:A rock mechanics enigma",in which several relevant technical issues were identified.This paper outlines what is considered to be a credible,first-principles,mechanistic explanation for these three current development coal burst conundrums by reference to early published coal testing work examining the significance of a lack of"constraint"to coal stability and an understanding of how very specific structural geology and other geological features can logically cause this to occur in situ,albeit on a statistically very rare basis.This basic model is examined by reference to published information pertaining to the development coal-burst that occurred at the Austar Coal Mine in New South Wales,Australia,in 2014 and from the Sunnyside District in Utah,the United States.The"cause and effect"model for development of coal bursts presented also offers a meaningful explanation for the statistical improbability for what are nonetheless potentially highly-destructive events,being able to explain the statistical rarity being just as important to the credibility of the model as explaining the local conditions associated with burst events.The model could also form the basis for a robust,riskbased approach utilising a"hierarchy of controls",to the operational management of the development coal burst threat.Specifically,the use of pre-mining predictions for likely burst-prone and non-burstprone areas,the use of the mine layout to avoid or at least minimise mining within burst-prone areas if appropriate,and finally the development of an operational Trigger Action Response Plan(TARP)that reduces the likelihood of inadvertent roadway development into a burst-prone area without suitable safety controls already being in place. 展开更多
关键词 DEVELOPMENT COAL burst Wing-cracks Austar MINE Sunnyside MINE MAJOR horizontal stress in COAL
在线阅读 下载PDF
General equation describing viscosity of metallic melts under horizontal magnetic field 被引量:1
20
作者 许亦鹏 赵晓林 颜廷亮 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期430-435,共6页
Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively ... Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively describe the viscosity of single and binary metallic melts under a horizontal magnetic field. The relationship between the viscosity and the electrical resistivity under the horizontal magnetic field was studied, which can be described as(η+2H/πΩb2)(ηB is the viscosity under the horizontal magnetic field, ηis the viscosity without the magnetic field, H is the height of the sample, Ω is the electrical resistivity, and B is the intensity of magnetic field). The viscosity under the horizontal magnetic field is proportional to the square of the intensity of the magnetic field, which is in very good agreement with the experimental results. In addition, the proportionality coefficient of ηB and quadratic B, which is related to the electrical resistivity, conforms to the law established that increasing the temperature of the completely mixed melts is accompanied by an increase of the electrical resistivity. We can predict the viscosity of metallic melts under magnetic field by measuring the electrical resistivity based on our equation, and vice versa. This discovery is important for understanding condensed-matter physics under external magnetic field. 展开更多
关键词 VISCOSITY horizontal magnetic field metallic melts electrical resistivity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部