For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First...For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.展开更多
A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil ac...A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.展开更多
针对传统线性扩张状态观测器(linear extended state observer,LESO)低通滤波特性不足以跟踪快速变化的反电动势,导致估计反电动势幅值损失和相位偏差问题,提出一种改进线性扩张状态观测器的永磁轮毂电机无传感器控制算法。将降阶准谐...针对传统线性扩张状态观测器(linear extended state observer,LESO)低通滤波特性不足以跟踪快速变化的反电动势,导致估计反电动势幅值损失和相位偏差问题,提出一种改进线性扩张状态观测器的永磁轮毂电机无传感器控制算法。将降阶准谐振控制器植入传统线性扩张状态观测器的内部模型中,在不同转速下均能获得无幅值衰减和无相位滞后的反电动势,准确估计永磁轮毂电机转子位置与转速,提高永磁轮毂电机在调速和突加减负载时无位置传感器控制算法的可靠性。结果表明:相较于传统LESO,改进后的线性扩张观测器算法在宽转速范围内,转速估计误差为2.3 r/min,位置估计误差仅为0.4°,在负载突变和参数失配的工况下具有较强的鲁棒性和抗干扰能力。展开更多
磁悬浮转子在基础激励作用下振动会进一步加剧,严重时会发生碰摩而使系统失稳。针对此问题,通过引入扩张状态观测器(extended state observer,简称ESO)来实现基础激励的振动控制,其鲁棒性强且不依赖精确建模,可以实时观测扰动。首先,搭...磁悬浮转子在基础激励作用下振动会进一步加剧,严重时会发生碰摩而使系统失稳。针对此问题,通过引入扩张状态观测器(extended state observer,简称ESO)来实现基础激励的振动控制,其鲁棒性强且不依赖精确建模,可以实时观测扰动。首先,搭建基础激励下磁悬浮转子机电一体化模型,利用该模型仿真分析了基础激励参数与比例-积分-微分(proportional integral derivative,简称PID)控制参数变化对系统动力学响应的影响规律,得知PID难以满足基础激励抑振需求;其次,分析了基础激励对转子系统的径向耦合作用,利用ESO将基础等效力与系统耦合项作为扰动进行振动补偿,并完成ESO的设计与参数整定;最后,仿真对比分析了不同基础激励作用下引入ESO的振动补偿效果。试验结果表明,引入ESO使基础激励下转子振动位移衰减达30%以上,具有较强的鲁棒性和抗干扰能力。展开更多
This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金supported by the Chinese Aviation Science Fund(20160757001)the National Natural Science Foundation of China(10577012)。
文摘For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.
基金supported by the National Natural Science Foundation of China(5170532751805329)+1 种基金Fundamental Research Funds for the Central Universities of China(NS2020065)the Natural Science Foundation of Shanghai(19ZR1453300).
文摘A novel non-contact spacecraft architecture with the extended stochastic state observer for disturbance rejection control of the gravity satellite is proposed.First,the precise linear driving non-contact voice-coil actuators are used to separate the whole spacecraft into the non-contact payload module and the service module,and to build an ideal loop with precise dynamics for disturbance rejection control of the payload module.Second,an extended stochastic state observer is enveloped to construct the overall nonlinear external terms and the internal coupled terms of the payload module,enabling the controller design of the payload module turned into the linear form with simple bandwidth-parameterization tuning in the frequency domain.As a result,the disturbance rejection control of the payload module can be explicitly achieved in a timely manner without complicated tuning in actual implementation.Finally,an extensive numerical simulation is conducted to validate the feasibility and effectiveness of the proposed approach.
文摘针对传统线性扩张状态观测器(linear extended state observer,LESO)低通滤波特性不足以跟踪快速变化的反电动势,导致估计反电动势幅值损失和相位偏差问题,提出一种改进线性扩张状态观测器的永磁轮毂电机无传感器控制算法。将降阶准谐振控制器植入传统线性扩张状态观测器的内部模型中,在不同转速下均能获得无幅值衰减和无相位滞后的反电动势,准确估计永磁轮毂电机转子位置与转速,提高永磁轮毂电机在调速和突加减负载时无位置传感器控制算法的可靠性。结果表明:相较于传统LESO,改进后的线性扩张观测器算法在宽转速范围内,转速估计误差为2.3 r/min,位置估计误差仅为0.4°,在负载突变和参数失配的工况下具有较强的鲁棒性和抗干扰能力。
文摘磁悬浮转子在基础激励作用下振动会进一步加剧,严重时会发生碰摩而使系统失稳。针对此问题,通过引入扩张状态观测器(extended state observer,简称ESO)来实现基础激励的振动控制,其鲁棒性强且不依赖精确建模,可以实时观测扰动。首先,搭建基础激励下磁悬浮转子机电一体化模型,利用该模型仿真分析了基础激励参数与比例-积分-微分(proportional integral derivative,简称PID)控制参数变化对系统动力学响应的影响规律,得知PID难以满足基础激励抑振需求;其次,分析了基础激励对转子系统的径向耦合作用,利用ESO将基础等效力与系统耦合项作为扰动进行振动补偿,并完成ESO的设计与参数整定;最后,仿真对比分析了不同基础激励作用下引入ESO的振动补偿效果。试验结果表明,引入ESO使基础激励下转子振动位移衰减达30%以上,具有较强的鲁棒性和抗干扰能力。
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.