期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical analysis of rock fracturing by gas pressure using the extended finite element method 被引量:10
1
作者 Majid Goodarzi Soheil Mohammadi Ahmad Jafari 《Petroleum Science》 SCIE CAS CSCD 2015年第2期304-315,共12页
High energy gas fracturing is a simple approach of applying high pressure gas to stimulate wells by gen- erating several radial cracks without creating any other damages to the wells. In this paper, a numerical algori... High energy gas fracturing is a simple approach of applying high pressure gas to stimulate wells by gen- erating several radial cracks without creating any other damages to the wells. In this paper, a numerical algorithm is proposed to quantitatively simulate propagation of these fractures around a pressurized hole as a quasi-static phenomenon. The gas flow through the cracks is assumed as a one-dimensional transient flow, governed by equations of conservation of mass and momentum. The fractured medium is modeled with the extended finite element method, and the stress intensity factor is calculated by the simple, though sufficiently accurate, displacement ex- trapolation method. To evaluate the proposed algorithm, two field tests are simulated and the unknown parameters are determined through calibration. Sensitivity analyses are performed on the main effective parameters. Considering that the level of uncertainty is very high in these types of engineering problems, the results show a good agreement with the experimental data. They are also consistent with the theory that the final crack length is mainly determined by the gas pressure rather than the initial crack length produced by the stress waves. 展开更多
关键词 Gas fracturing Numerical modeling extended finite element Fracture mechanics
在线阅读 下载PDF
Fixed-length roof cutting with vertical hydraulic fracture based on the stress shadow effect:A case study 被引量:5
2
作者 Feiteng Zhang Xiangyu Wang +3 位作者 Jianbiao Bai Wenda Wu Bowen Wu Guanghui Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期295-308,共14页
Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as resea... Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as research background,the roof breaking structure of PLRR is analyzed.It is concluded that the roof cutting with vertical hydraulic fracture(HF)at a specified position,that is,fixed-length roof cutting,can reduce support load and keep immediate roof intact.The extended finite element method(XFEM)is applied to simulate hydraulic fracturing.The results show that both the axial and transverse hydraulic fracturing cannot effectively create vertical HFs.Therefore,a novel construction method of vertical HF based on the stress shadow effect(SSE)is proposed.The stress reversal region and HF orientation caused by the prefabricated hydraulic fracture(PF)are verified in simulation.The sub-vertical HFs are obtained between two PFs,the vertical extension range of which is much larger than that of directional hydraulic fracturing.The new construction method was used to determine the field plan for fixed-length roof cutting.The roof formed a stable suspended structure and deformation of the main PLRR was improved after hydraulic fracturing. 展开更多
关键词 Roof cutting Hydraulic fracture Stress shadow effect Retracement roadway extended finite element method
在线阅读 下载PDF
Numerical simulation of fracture propagation in Russia carbonate reservoirs during refracturing 被引量:1
3
作者 Dao-Bing Wang Fu-Jian Zhou +7 位作者 Yi-Peng Li Bo Yu Dmitriy Martyushev Xiong-Fei Liu Meng Wang Chun-Ming He Dong-Xu Han Dong-Liang Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2781-2795,共15页
Refracturing treatment is often performed on Russian carbonate reservoirs because of the quick production decline of reservoirs.The traditional refracturing model assumes that a refracture initiates in the normal dire... Refracturing treatment is often performed on Russian carbonate reservoirs because of the quick production decline of reservoirs.The traditional refracturing model assumes that a refracture initiates in the normal direction relative to the initial hydro-fracture.This assumption is inconsistent with oilfield measurements of refracture propagation trajectories.Indeed,the existing model is not based on an indepth understanding of initiation and propagation mechanisms of the second hydraulic fractures during refracturing.In this study,we use the extended finite element method to investigate refracture propagation paths at different initiation angles.Both the enriched function approach and phantom mode technique are incorporated into the refracturing model,thereby ensuring that the refracture can freely extend on the structured mesh without any refinement near the crack tips.Key factors including production time,stress anisotropy and initiation angle,and the propped mechanical effect are analyzed in detail.This study provides new insight into the mechanism of refracture propagation in unconventional reservoirs. 展开更多
关键词 REFRACTURING Stress reorientation extended finite element method Carbonate reservoir Fracture diversion
在线阅读 下载PDF
A Numerical Investigation of an Abnormal Phenomenon of Stress Intensity Factor(SIF)in a Cracked T-Butt Joint Accounting for Welding Effect 被引量:1
4
作者 Matteo Schiaretti Jie Cai +2 位作者 Xiaoli Jiang Shengming Zhang Dingena Schott 《Journal of Marine Science and Application》 CSCD 2021年第2期343-353,共11页
Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM si... Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM simulation occasionally failed to convince people due to the large discrepancies compared with engineering practice.As a consequence,inaccuracy predictions via such formulas in engineering standards inevitably occur,which will compromise the safety of structures.In our previous research work,an abnormal phenomenon of SIF in a cracked T-butt joint accounting for welding effect has been observed.Compared with BS 7910,the calculation results of SIF at the surface points of welded specimens cannot be well predicted,with a large discrepancy appearing.In order to explore such problem with an abnormal increase at the surface points of cracked welded specimens,a numerical investigation in terms of SIF among BS 7910,XFEM,and FEM is performed in this paper.Numerical models on both a simple cracked plate without welding effect and a cracked T-butt joint with welding effect are developed through ABAQUS.Parametric studies in terms of the effects of varied crack depth to thickness ratio(a/T) and the effects of crack depth to crack half-length ratio(a/c) are carried out.Empirical solutions from BS 7910 are used for comparison.It is found that the XFEM can provide predictions of SIF at both the crack deepest point and crack surface point of a simple cracked plate as accurate as FEM.For a T-butt joint with a transverse stiffener,a large discrepancy in terms of the weld magnification factors(Mk) occurs at the crack surface point compared with empirical predictions.An exceptional increase of von Mises stress gradient in regions close to the weld-toe is found through the simulation of FEM,whereas a constant stress gradient is obtained through XFEM.The comparison results indicate an inappropriate prediction of SIF by the utilization of the empirical formulas in BS 7910.A more reasonable prediction of the SIF at the surface point of a crack is obtained by the XFEM.Therefore,further updating of the empirical solutions in BS7910 for SIF accounting for welding effect is recommended. 展开更多
关键词 Stress intensity factor(SIF) CRACK T-butt joint BS 7910 extended finite element method(XFEM) finite element method(FEM)
在线阅读 下载PDF
Stable Fatigue Crack Propagation of 16MnR Steel
5
作者 Yanwen Liu Guangyuan Jin +1 位作者 Jinjun Gao Yajie Liu 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期603-612,共10页
A research on the stable fatigue crack propagation of 16MnR steel is investigated systematically in this paper.First,control experiments of 16MnR with compact tension specimen is conducted to study the effect of R-rat... A research on the stable fatigue crack propagation of 16MnR steel is investigated systematically in this paper.First,control experiments of 16MnR with compact tension specimen is conducted to study the effect of R-ratios,specimen thickness and notch sizes.The experiments show that the fatigue crack growth(FCG)rate in stable propagation was insensitive to these factors.Then,the stress intensity factor(SIF)is computed and compared by displacement interpolation method,J integral and interaction integral method respectively.The simulation shows that optimization on the mesh density and the angle of singular element improved the computational efficiency and accuracy of SIF and the interaction integral method has an obvious advantage on stability.Finally,the FCG rate is modeled by the Jiang fatigue damage criterion and the extended finite element method(XFEM)respectively.The simulation results of FCG rate are in line with experiments data and indicate that XFEM method is more accurate than Jiang fatigue damage method. 展开更多
关键词 16MnR crack propagation stress intensity factors fatigue damage extended finite element method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部