When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman...A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.展开更多
The nonlinear filtering for a class of discrete-time stochastic dynamic systems whose measurement equations contain linear (or universal linearizable) components and nonlinear components which are mutually statistical...The nonlinear filtering for a class of discrete-time stochastic dynamic systems whose measurement equations contain linear (or universal linearizable) components and nonlinear components which are mutually statistical independent is investigated. A two-step measurement update is proposed for the filtering of the systems. The first-step update is a linear (or universal linearization) measurement correction which introduces an intermediate estimate, while the second-step nonlinear linearization update produces the final posterior estimate based on the first-step estimate. Since the first measurement correction is a linear or universal linearization update, it provides an accurate linearization reference point for the second nonlinear measurement update. Two simulation examples show superiority of the new estimation method.展开更多
The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the all...The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.展开更多
In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and mo...In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment. The UKF has good performance in case of small initial misalignment.展开更多
State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradicti...State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.展开更多
An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot...An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.展开更多
Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innov...Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.展开更多
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ...For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.展开更多
In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant ac...In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.展开更多
Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than th...Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than that of EKF, because PF does not involve the linearization approximating to nonlinear systems, that is required by the EKF. PF has been shown to be a superior alternative to the EKF in a variety of applications. The base idea of PF is the approximation of relevant probabifity distributions using the concepts of sequential importance sampling and approximation of probability distributions using a set of discrete random samples with associated weights. PF methods still need to be improved in the aspects of accuracy and calculating speed.展开更多
To improve the independent ability of attitude determination and positioning for an unmanned experimental airship platform, a micro inertial measurement system (MIMS) is expected to integrate with the existing system,...To improve the independent ability of attitude determination and positioning for an unmanned experimental airship platform, a micro inertial measurement system (MIMS) is expected to integrate with the existing system, which incorporates a digital magnetic compass and a differential pseudorange GPS receiver. The navigation error of the low-precision MIMS will be calibrated using nondrift DGPS receiver and magnetic compass. This paper proposes an adaptive strong tracking filter to perform multisensor fusion to assure state-error estimation of convergence under some uncertain conditions. These uncertainties include model simplification, unknown microsensor stochastic characteristics, a large-scale initial filtering parameter variation, and state sudden change. Monte Carlo simulations demonstrate the filter has strong robustness to all the uncertainties mentioned above. By this filtering approach, the navigation errors of MIMS are limited to a certain range. Accordingly, the whole integrated measurement system will respond to dynamics, and its automotive navigation ability is also enhanced.展开更多
In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle ...In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.展开更多
In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this pr...In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.展开更多
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer...The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliab...When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc- tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de- fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel- lite, and the results are compared.展开更多
A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separat...A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the ob...An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.展开更多
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
文摘A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.
文摘The nonlinear filtering for a class of discrete-time stochastic dynamic systems whose measurement equations contain linear (or universal linearizable) components and nonlinear components which are mutually statistical independent is investigated. A two-step measurement update is proposed for the filtering of the systems. The first-step update is a linear (or universal linearization) measurement correction which introduces an intermediate estimate, while the second-step nonlinear linearization update produces the final posterior estimate based on the first-step estimate. Since the first measurement correction is a linear or universal linearization update, it provides an accurate linearization reference point for the second nonlinear measurement update. Two simulation examples show superiority of the new estimation method.
基金Project(050403)supported by Pre-research Project in the Manned Space Filed of China。
文摘The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.
文摘In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment. The UKF has good performance in case of small initial misalignment.
基金Projects(51607122,51378350)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KZSKL-2018-02)supported by the State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy Research,China+4 种基金Project(18JCTPJC63000)supported by Tianjin Enterprise Science and Technology Commissioner Project,ChinaProject(2017KJ094,2017KJ093)supported by Tianjin Education Commission Scientific Research Plan Project,ChinaProject(17ZLZXZF00280)supported by Tianjin Science and Technology Project,ChinaProject(18JCQNJC77200)supported by Tianjin Province Science and Technology projects,ChinaProject(2017YFB1103003,2016YFB1100501)supported by National Key Research and Development Plan,China
文摘State of charge(SOC)estimation has always been a hot topic in the field of both power battery and new energy vehicle(electric vehicle(EV),plug-in electric vehicle(PHEV)and so on).In this work,aiming at the contradiction problem between the exact requirements of EKF(extended Kalman filter)algorithm for the battery model and the dynamic requirements of battery mode in life cycle or a charge and discharge period,a completely data-driven SOC estimation algorithm based on EKF algorithm is proposed.The innovation of this algorithm lies in that the EKF algorithm is used to get the SOC accurate estimate of the power battery online with using the observable voltage and current data information of the power battery and without knowing the internal parameter variation of the power battery.Through the combination of data-based and model-based SOC estimation method,the new method can avoid high accumulated error of traditional data-driven SOC algorithms and high dependence on battery model of most of the existing model-based SOC estimation methods,and is more suitable for the life cycle SOC estimation of the power battery operating in a complex and ever-changing environment(such as in an EV or PHEV).A series of simulation experiments illustrate better robustness and practicability of the proposed algorithm.
文摘An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.
基金Projects(2009AA093302,2002AA401003)supported by the National High-Tech Research and Development Program of ChinaProject(YYYJ-0917)supported by the Knowledge Innovation of Chinese Academy of Sciences+1 种基金Projects(61273334,61233013)supported by the National Natural Science Foundation of ChinaProject(2011010025-401)supported by the Natural Science Foundation of Liaoning Province,China
文摘Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.
基金This project was supported by the National Natural Science Foundation of China (50405017) .
文摘For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
文摘In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.
文摘Extended Kalman filter (EKF) is one of the most widely used methods for nonlinear system estimation. A new filtering algorithm, called particle filtering (PF) is introduced. PF can yield better performance than that of EKF, because PF does not involve the linearization approximating to nonlinear systems, that is required by the EKF. PF has been shown to be a superior alternative to the EKF in a variety of applications. The base idea of PF is the approximation of relevant probabifity distributions using the concepts of sequential importance sampling and approximation of probability distributions using a set of discrete random samples with associated weights. PF methods still need to be improved in the aspects of accuracy and calculating speed.
文摘To improve the independent ability of attitude determination and positioning for an unmanned experimental airship platform, a micro inertial measurement system (MIMS) is expected to integrate with the existing system, which incorporates a digital magnetic compass and a differential pseudorange GPS receiver. The navigation error of the low-precision MIMS will be calibrated using nondrift DGPS receiver and magnetic compass. This paper proposes an adaptive strong tracking filter to perform multisensor fusion to assure state-error estimation of convergence under some uncertain conditions. These uncertainties include model simplification, unknown microsensor stochastic characteristics, a large-scale initial filtering parameter variation, and state sudden change. Monte Carlo simulations demonstrate the filter has strong robustness to all the uncertainties mentioned above. By this filtering approach, the navigation errors of MIMS are limited to a certain range. Accordingly, the whole integrated measurement system will respond to dynamics, and its automotive navigation ability is also enhanced.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2007AA01Z307).
文摘In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.
基金supported by the Natural Science Foundation of Beijing Municipality(Grant No.4212003)the Crossdisciplinary Collaboration Project of Beijing Municipal Science and Technology New Star Program(Grant No.202111)。
文摘In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.
文摘The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc- tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de- fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel- lite, and the results are compared.
基金supported by the National Natural Science Foundation of China (60574022).
文摘A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金Project(60234030) supported by the National Natural Science Foundation of China project(A1420060159) supported by the National Basic Research
文摘An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.