In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypro...In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypropylene(PO)and oxyethylene(EO),octadecyl-(PO)_(m)-(EO)_(n)-sodium carboxylate(C_(18)PO_(m)EO_(n)C,m=5,10,15,n=5,10,15),were studied.The surface tension and contact angle of C_(18)PO_(m)EO_(n)C solution with different concentrations were measured,and the adhesion tension,PTFE-water interfacial tension,and adhesion work were calculated.It was found that the extended surfactant molecules adsorb on the surface of the solution and the PTFE-liquid interface simultaneously when the concentration is lower than the critical micelle concentration(cmc),and there was a linear relationship between surface tension and adhesion tension.The adsorption amount of C_(18)PO_(m)EO_(n)C at the PTFE-water interface was significantly lower than that on the surface of the solution.As the concentration increases above cmc,semi-micelle aggregates on the surface of PTFE are formed by C_(18)PO_(m)EO_(n)C molecules through hydrophobic interaction,and the hydrophilic group faces the solution to modify the surface of PTFE with high efficiency.展开更多
In this paper,a scheme of commonly-resonated extended interaction circuit system based on high order TMn,mode is proposed to lock the phases of two extended interaction oscillators(EIOs)for generating high power at G-...In this paper,a scheme of commonly-resonated extended interaction circuit system based on high order TMn,mode is proposed to lock the phases of two extended interaction oscillators(EIOs)for generating high power at G-band.Two separate EIOs are coupled through a specific single-gap coupling field supported by a designed gap waveguide with length Lg,which form the phase-locked EIOs based on the commonly-resonated system.As a whole system,the system has been focused on with mode analysis based on different single-gap coupling fields,mode hopping,which present the variation of phase difference between the two-beam-wave interactions when changing Lg.To demonstrate the effectiveness of the proposed circuit system in producing the phase locking,we conducted particle-in-cell(PIC)simulations to show that the interesting mode hopping occurs with the phase difference of O and r between the output signals from two output ports,corresponding to the excitation of the TMn mode with different n.Simulation results show that 1)the oscillator can deliver two times of the output power obtained from one single oscillator at 220 GHz,2)the two EIOs can still deliver output signals with phase difference of O and when the currents of the two beams are different or the fabrication errors of the two EIO cavities are taken into account.The proposed scheme is promising in extending to phase locking between multiple EIOs,and generating higher power at millimeter-wave and higher frequencies.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant ac...In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.展开更多
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman...A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.展开更多
文摘In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypropylene(PO)and oxyethylene(EO),octadecyl-(PO)_(m)-(EO)_(n)-sodium carboxylate(C_(18)PO_(m)EO_(n)C,m=5,10,15,n=5,10,15),were studied.The surface tension and contact angle of C_(18)PO_(m)EO_(n)C solution with different concentrations were measured,and the adhesion tension,PTFE-water interfacial tension,and adhesion work were calculated.It was found that the extended surfactant molecules adsorb on the surface of the solution and the PTFE-liquid interface simultaneously when the concentration is lower than the critical micelle concentration(cmc),and there was a linear relationship between surface tension and adhesion tension.The adsorption amount of C_(18)PO_(m)EO_(n)C at the PTFE-water interface was significantly lower than that on the surface of the solution.As the concentration increases above cmc,semi-micelle aggregates on the surface of PTFE are formed by C_(18)PO_(m)EO_(n)C molecules through hydrophobic interaction,and the hydrophilic group faces the solution to modify the surface of PTFE with high efficiency.
基金Supported in part by the National Natural Science Foundation of China(62401125)the Natural Science Foundation of Sichuan Province(2023NSFSC1376)the Fundamental Research Funds for the Central Universities(ZYGX2024J008)。
文摘In this paper,a scheme of commonly-resonated extended interaction circuit system based on high order TMn,mode is proposed to lock the phases of two extended interaction oscillators(EIOs)for generating high power at G-band.Two separate EIOs are coupled through a specific single-gap coupling field supported by a designed gap waveguide with length Lg,which form the phase-locked EIOs based on the commonly-resonated system.As a whole system,the system has been focused on with mode analysis based on different single-gap coupling fields,mode hopping,which present the variation of phase difference between the two-beam-wave interactions when changing Lg.To demonstrate the effectiveness of the proposed circuit system in producing the phase locking,we conducted particle-in-cell(PIC)simulations to show that the interesting mode hopping occurs with the phase difference of O and r between the output signals from two output ports,corresponding to the excitation of the TMn mode with different n.Simulation results show that 1)the oscillator can deliver two times of the output power obtained from one single oscillator at 220 GHz,2)the two EIOs can still deliver output signals with phase difference of O and when the currents of the two beams are different or the fabrication errors of the two EIO cavities are taken into account.The proposed scheme is promising in extending to phase locking between multiple EIOs,and generating higher power at millimeter-wave and higher frequencies.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers.
文摘A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.