In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigate...In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying th...This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying the theory of the Kronecker product of matrices and the linear matrix inequality (LMI) technique, several novel sufficient conditions for cluster exponential synchronization are obtained. These cluster exponential synchronization conditions adopt the bounds of both time delay and its derivative, which are less conservative. Finally, the numerical simulations are performed to show the effectiveness of the theoretical results.展开更多
In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield n...In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.展开更多
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The ...Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.展开更多
In this paper we present a synchronization method for chaotic Lur'e systems by constructing a new piecewise Lyapunov function. Using a delayed feedback control scheme, a delay-dependent stability criterion is derived...In this paper we present a synchronization method for chaotic Lur'e systems by constructing a new piecewise Lyapunov function. Using a delayed feedback control scheme, a delay-dependent stability criterion is derived for the synchronization of chaotic systems that are represented by Lur'e systems with deadzone nonlinearity. Based on the Lyapunov-Krasovskii functional and by using some properties of the nonlinearity, a new delay-dependent stabilization condition for synchronization is obtained via linear matrix inequality (LMI) formulation. The criterion is less conservative than existing ones, and it will be verified through a numerical example.展开更多
We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic sta...We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.展开更多
This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is ...This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.展开更多
基金Project supported by the NBHM Research Project (Grant Nos.2/48(7)/2012/NBHM(R.P.)/R and D II/12669)
文摘In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61074073 and 61034005)the Fundamental Research Funds for the Central Universities of China (Grant No. N110504001)the Open Project of the State Key Laboratory of Management and Control for Complex Systems, China (Grant No. 20110107)
文摘This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying the theory of the Kronecker product of matrices and the linear matrix inequality (LMI) technique, several novel sufficient conditions for cluster exponential synchronization are obtained. These cluster exponential synchronization conditions adopt the bounds of both time delay and its derivative, which are less conservative. Finally, the numerical simulations are performed to show the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026), the Science Foundation of Southern Yangtze University, China.
文摘In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.
基金supported by No. DST/INSPIRE Fellowship/2010/[293]/dt. 18/03/2011
文摘Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.
基金Project supported by the Daegu University Research(Grant No.2009)
文摘In this paper we present a synchronization method for chaotic Lur'e systems by constructing a new piecewise Lyapunov function. Using a delayed feedback control scheme, a delay-dependent stability criterion is derived for the synchronization of chaotic systems that are represented by Lur'e systems with deadzone nonlinearity. Based on the Lyapunov-Krasovskii functional and by using some properties of the nonlinearity, a new delay-dependent stabilization condition for synchronization is obtained via linear matrix inequality (LMI) formulation. The criterion is less conservative than existing ones, and it will be verified through a numerical example.
基金Project supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (Grant No.2010-0009373)
文摘We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.
文摘This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.