当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精...当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精度的转速跟随控制。但实验和理论分析表明,由于ESO的带宽有限,对于变化扰动的补偿能力较弱,参数失配时系统的动态性能恶化。为同时改善参数失配时系统的稳态控制精度和动态性能,并提高鲁棒性,该文将无模型控制与EMP控制进行融合,通过构造超局部预测模型和数据驱动观测器,提出新的EMP直接速度控制策略。实验结果表明:所提方法凭借数据驱动观测器的高观测带宽,可以同时在动态和稳态阶段实现参数失配的优良补偿,兼顾动态与稳态性能。展开更多
切换非线性系统在不同模式间平稳切换和经济切换是全局优化运行的主要需求.针对不同模式有限时域下控制算法可行域未必存在交集的系统,提出了对应的经济预测控制算法(Economic model predictive control,EMPC)及切换策略.切换发生时,该...切换非线性系统在不同模式间平稳切换和经济切换是全局优化运行的主要需求.针对不同模式有限时域下控制算法可行域未必存在交集的系统,提出了对应的经济预测控制算法(Economic model predictive control,EMPC)及切换策略.切换发生时,该方法在实时优化层求解和更新可行中间点,并构造基于耗散的局部EMPC辅助性能指标,在考虑中间点稳定性问题上使其尽可能逼近原经济性能.在先进控制层,利用局部EMPC将状态逐次稳定至中间点,同时利用中间点问题得到的最优轨迹保证模式间的经济切换.最后,分析了切换过程的暂态经济性.该方法实际可操作性强,仿真结果说明了方法的有效性.展开更多
针对现代电力系统中设施庞杂、多源异构海量数据难以有效处理、“信息孤岛”长期存在以及整体优化调度管理能力不足等问题,基于云控制系统理论,以智能电厂为研究对象,本文提出了智能电厂云控制系统(Intelligent power plant cloud contr...针对现代电力系统中设施庞杂、多源异构海量数据难以有效处理、“信息孤岛”长期存在以及整体优化调度管理能力不足等问题,基于云控制系统理论,以智能电厂为研究对象,本文提出了智能电厂云控制系统(Intelligent power plant cloud control system,IPPCCS)解决方案.基于智能电厂云控制系统,针对绿色能源发电波动性强、抗扰能力差的问题,利用机器学习算法对采集到的风电、光伏输出功率进行短时预测,获知未来风、光机组功率输出情况.在云端使用经济模型预测控制(Economic model predictive control,EMPC)算法,通过实时滚动优化得到水轮机组的功率预测调度策略,保证绿色能源互补发电的鲁棒性,充分消纳风、光两种能源,减少水轮机组启停和穿越振动区次数,在为用户清洁、稳定供电的同时降低了机组寿命损耗.最后,一个区域云数据中心的供电算例表明了本文方法的有效性.展开更多
文摘当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精度的转速跟随控制。但实验和理论分析表明,由于ESO的带宽有限,对于变化扰动的补偿能力较弱,参数失配时系统的动态性能恶化。为同时改善参数失配时系统的稳态控制精度和动态性能,并提高鲁棒性,该文将无模型控制与EMP控制进行融合,通过构造超局部预测模型和数据驱动观测器,提出新的EMP直接速度控制策略。实验结果表明:所提方法凭借数据驱动观测器的高观测带宽,可以同时在动态和稳态阶段实现参数失配的优良补偿,兼顾动态与稳态性能。
文摘切换非线性系统在不同模式间平稳切换和经济切换是全局优化运行的主要需求.针对不同模式有限时域下控制算法可行域未必存在交集的系统,提出了对应的经济预测控制算法(Economic model predictive control,EMPC)及切换策略.切换发生时,该方法在实时优化层求解和更新可行中间点,并构造基于耗散的局部EMPC辅助性能指标,在考虑中间点稳定性问题上使其尽可能逼近原经济性能.在先进控制层,利用局部EMPC将状态逐次稳定至中间点,同时利用中间点问题得到的最优轨迹保证模式间的经济切换.最后,分析了切换过程的暂态经济性.该方法实际可操作性强,仿真结果说明了方法的有效性.
文摘针对现代电力系统中设施庞杂、多源异构海量数据难以有效处理、“信息孤岛”长期存在以及整体优化调度管理能力不足等问题,基于云控制系统理论,以智能电厂为研究对象,本文提出了智能电厂云控制系统(Intelligent power plant cloud control system,IPPCCS)解决方案.基于智能电厂云控制系统,针对绿色能源发电波动性强、抗扰能力差的问题,利用机器学习算法对采集到的风电、光伏输出功率进行短时预测,获知未来风、光机组功率输出情况.在云端使用经济模型预测控制(Economic model predictive control,EMPC)算法,通过实时滚动优化得到水轮机组的功率预测调度策略,保证绿色能源互补发电的鲁棒性,充分消纳风、光两种能源,减少水轮机组启停和穿越振动区次数,在为用户清洁、稳定供电的同时降低了机组寿命损耗.最后,一个区域云数据中心的供电算例表明了本文方法的有效性.