There has been an increasing interest in integrating decision support systems (DSS) and expert systems (ES) to provide decision makers a more accessible, productive and domain-independent information and computing env...There has been an increasing interest in integrating decision support systems (DSS) and expert systems (ES) to provide decision makers a more accessible, productive and domain-independent information and computing environment. This paper is aimed at designing a multiple expert systems integrated decision support system (MESIDSS) to enhance decision makers' ability in more complex cases. The basic framework, management system of multiple ESs, and functions of MESIDSS are presented. The applications of MESIDSS in large-scale decision making processes are discussed from the following aspects of problem decomposing, dynamic combination of multiple ESs, link of multiple bases and decision coordinating. Finally, a summary and some ideas for the future are presented.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
文摘There has been an increasing interest in integrating decision support systems (DSS) and expert systems (ES) to provide decision makers a more accessible, productive and domain-independent information and computing environment. This paper is aimed at designing a multiple expert systems integrated decision support system (MESIDSS) to enhance decision makers' ability in more complex cases. The basic framework, management system of multiple ESs, and functions of MESIDSS are presented. The applications of MESIDSS in large-scale decision making processes are discussed from the following aspects of problem decomposing, dynamic combination of multiple ESs, link of multiple bases and decision coordinating. Finally, a summary and some ideas for the future are presented.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.