Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an ...Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an accurate dynamic model of the flexible robotic arm is established by using the absolute nodal coordinate formulation(ANCF)in the framework of the arbitrary Lagrangian-Eulerian(ALE)description and the natural coordinate formulation(NCF).The contact and self-contact dynamics of the flexible robotic arm when bending and grasping an object are considered via a fast contact detection approach.Then,the dynamic simulations of the flexible robotic arm for capturing floating targets are carried out to study the influence of the position,size,and mass of the target object on the grasping performance.Finally,a principle prototype of the tendon-actuated flexible robotic arm is manufactured to validate the dynamic model.The corresponding grasping experiments for objects of various shapes are also conducted to illustrate the excellent performance of the flexible robotic arm.展开更多
To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experimen...To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.展开更多
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi...Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.展开更多
This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ...This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.展开更多
The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal ...The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.展开更多
Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experimen...Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.展开更多
SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satelli...SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satellite was launched on 6 April 2016.This paper introduces briefly the SJ-10 mission,the progress of SJ-10 engineering and the project constitution of sciences experiments onboard SJ-10.The purpose of this mission is to discover the law of matter movement and the rule of life activity that cannot be discovered on the ground due to the existence of gravity,and to know the acting mechanism on organisms by the complex radiation of space that cannot be simulated on the ground.展开更多
In order to study the abnormal substrate current and reliability problem of LDDMOSFET observed in experiments, two dimensional numerical simulation for devices has been performed, and an optimum process for LDD is sug...In order to study the abnormal substrate current and reliability problem of LDDMOSFET observed in experiments, two dimensional numerical simulation for devices has been performed, and an optimum process for LDD is suggested.展开更多
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experi...To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.展开更多
The work principle of flat-plate structure under shearing mode is expounded based on a vertical type rheometer for MRF which combined data acquisition with treatment and result display.The formula to calculate shearin...The work principle of flat-plate structure under shearing mode is expounded based on a vertical type rheometer for MRF which combined data acquisition with treatment and result display.The formula to calculate shearing stress is deduced.Based on different recipe for MRF,experiments under different working gap length were done by altering the intensity of magnetic field.The rheological model for MRF was established and the relationships between shearing stress,viscosity and magnetic field intensity were deduced.Experiments indicate that MRF has the flowing characters:with an increase of the magnetic induction and the nominal shear rate,the shear stress of MRF increases.However,as the working gap decreases,the shear stress increases.MRF has shear thinning property under magnetic field.展开更多
This paper introduces a measuring method of early lateral energy fraction in the scale model experiments. According to the interference principle of half wave length making the high frequency figure-8 directional micr...This paper introduces a measuring method of early lateral energy fraction in the scale model experiments. According to the interference principle of half wave length making the high frequency figure-8 directional microphone. With the signal-processing technique, a receiving and analyzing system, for the measurements of lateral energy fraction in the scale model is realized.展开更多
Pressure oscillation in solid rocket motor is believed to be the results of the interaction between the flow instability and the acoustics of combustion chamber.Several reasonable and necessary hypothesizes are given ...Pressure oscillation in solid rocket motor is believed to be the results of the interaction between the flow instability and the acoustics of combustion chamber.Several reasonable and necessary hypothesizes are given to establish an equation to describe this coupling.A cold flow motor called CVS60D(corner vortex shedding 60°)was designed to study the flow-acoustic coupling based on theoretical analysis.Experimental investigations were carried out to determine the acoustics of CVS60D.Corner vortex shedding is generated at the backward facing step which is designed similar to the geometry of the motor with finocyl propellant after the burnout of its fins.A pintle was used to modify the velocity in the duct to change the frequency of vortex shedding.It is found that large amplitude pressure oscillation occurs when the pintle moves to a range of specific position,which indicates that the frequency of vortex shedding is close to one order of acoustic modes of combustion chamber.The amplitude of pressure oscillation changes as the pintle moves.展开更多
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article ...Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.展开更多
Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current r...Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.展开更多
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical cha...Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.展开更多
In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated fl...In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.展开更多
This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliabil...This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliability engineering are summarized as a query,a dilemma,and a puzzle.Then,through philosophical reflection,we introduce the theoretical solutions given by belief reliability theory,including scientific principles,basic equations,reliability science experiments,and mathematical measures.The basic methods and technologies of belief reliability,namely,belief reliability analysis,function-oriented belief reliability design,belief reliability evaluation,and several newly developed methods and technologies are sequentially elaborated and overviewed.Based on the above investigations,we summarize the significance of belief reliability theory and make some prospects about future research,aiming to promote the development of reliability science and engineering.展开更多
Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is w...Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.展开更多
基金funded by the"14th Five-Year Plan"Civil Aerospace Pre-research Project of China(Grant No.D010301).
文摘Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an accurate dynamic model of the flexible robotic arm is established by using the absolute nodal coordinate formulation(ANCF)in the framework of the arbitrary Lagrangian-Eulerian(ALE)description and the natural coordinate formulation(NCF).The contact and self-contact dynamics of the flexible robotic arm when bending and grasping an object are considered via a fast contact detection approach.Then,the dynamic simulations of the flexible robotic arm for capturing floating targets are carried out to study the influence of the position,size,and mass of the target object on the grasping performance.Finally,a principle prototype of the tendon-actuated flexible robotic arm is manufactured to validate the dynamic model.The corresponding grasping experiments for objects of various shapes are also conducted to illustrate the excellent performance of the flexible robotic arm.
基金Projects(U23B2093,52274245)supported by the National Natural Science Foundation of ChinaProject(KFJJ22-15M)supported by the Opening Project of State Key Laboratory of Explosion Science and Technology,China。
文摘To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.
文摘Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.
文摘This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
基金supported by National Natural Science Foundation of China(Grant Nos.11971204,12271270)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200108)the Zhongwu Youth Innovative Talent Program of Jiangsu University of Technology and the Third Level Training Object of the Sixth“333 Project”in Jiangsu Province。
文摘The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.
文摘Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA04020000)United Funding from National Natural Science Foundation of China and Chinese Academy of Sciences。
文摘SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satellite was launched on 6 April 2016.This paper introduces briefly the SJ-10 mission,the progress of SJ-10 engineering and the project constitution of sciences experiments onboard SJ-10.The purpose of this mission is to discover the law of matter movement and the rule of life activity that cannot be discovered on the ground due to the existence of gravity,and to know the acting mechanism on organisms by the complex radiation of space that cannot be simulated on the ground.
文摘In order to study the abnormal substrate current and reliability problem of LDDMOSFET observed in experiments, two dimensional numerical simulation for devices has been performed, and an optimum process for LDD is suggested.
基金Project(50408020) supported by the National Natural Science Foundation of Chinaproject(05-0686) supported by the Program of New Century Excellent Talents in Universityproject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.
基金Projects(10472134,50490274) supported by the National Natural Science Foundation of China
文摘The work principle of flat-plate structure under shearing mode is expounded based on a vertical type rheometer for MRF which combined data acquisition with treatment and result display.The formula to calculate shearing stress is deduced.Based on different recipe for MRF,experiments under different working gap length were done by altering the intensity of magnetic field.The rheological model for MRF was established and the relationships between shearing stress,viscosity and magnetic field intensity were deduced.Experiments indicate that MRF has the flowing characters:with an increase of the magnetic induction and the nominal shear rate,the shear stress of MRF increases.However,as the working gap decreases,the shear stress increases.MRF has shear thinning property under magnetic field.
文摘This paper introduces a measuring method of early lateral energy fraction in the scale model experiments. According to the interference principle of half wave length making the high frequency figure-8 directional microphone. With the signal-processing technique, a receiving and analyzing system, for the measurements of lateral energy fraction in the scale model is realized.
基金Sponsored by the National Nature Science Foundation of China(10602047)
文摘Pressure oscillation in solid rocket motor is believed to be the results of the interaction between the flow instability and the acoustics of combustion chamber.Several reasonable and necessary hypothesizes are given to establish an equation to describe this coupling.A cold flow motor called CVS60D(corner vortex shedding 60°)was designed to study the flow-acoustic coupling based on theoretical analysis.Experimental investigations were carried out to determine the acoustics of CVS60D.Corner vortex shedding is generated at the backward facing step which is designed similar to the geometry of the motor with finocyl propellant after the burnout of its fins.A pintle was used to modify the velocity in the duct to change the frequency of vortex shedding.It is found that large amplitude pressure oscillation occurs when the pintle moves to a range of specific position,which indicates that the frequency of vortex shedding is close to one order of acoustic modes of combustion chamber.The amplitude of pressure oscillation changes as the pintle moves.
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
文摘Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.
基金National Natural Science Foundation of China(Grant Nos.12172179,11802141 and U2341244)National Natural Science Foundation for Young Scientists of China(Grant No.12202207)+3 种基金China Postdoctoral Science Foundation(Grant No.2022M711623)Natural Science Foundation of Jiangsu Province(Grant No.BK20220968)Open Funds for Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202201)Open Funds for Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province(Grant No.22kfgk03)。
文摘Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.
文摘Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.
基金Project(2022-Major-14)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.
基金supported by the National Natural Science Foundation of China(62073009,52775020,72201013)the China Postdoctoral Science Foundation(2022M710314)the Funding of Science&Technology on Reliability&Environmental Engineering Laboratory(6142004210102)。
文摘This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliability engineering are summarized as a query,a dilemma,and a puzzle.Then,through philosophical reflection,we introduce the theoretical solutions given by belief reliability theory,including scientific principles,basic equations,reliability science experiments,and mathematical measures.The basic methods and technologies of belief reliability,namely,belief reliability analysis,function-oriented belief reliability design,belief reliability evaluation,and several newly developed methods and technologies are sequentially elaborated and overviewed.Based on the above investigations,we summarize the significance of belief reliability theory and make some prospects about future research,aiming to promote the development of reliability science and engineering.
基金Project(42174170)supported by the National Natural Science Foundation of China。
文摘Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.