期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Determining representative elementary volume size of in-situ expansive soils subjected to drying-wetting cycles through field test 被引量:6
1
作者 CHENWei LI Guo-wei +3 位作者 HOU Yu-zhou WU Jian-tao YUAN Jun-ping Andrew Cudzo AMENUVOR 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3246-3259,共14页
Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to... Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given. 展开更多
关键词 representative elementary volume(REV) drying-wetting cycles expansive soil crack intensity factor(CIF) COHESION cracks
在线阅读 下载PDF
Stability analysis method of geogrid reinforced expansive soil slopes and its engineering application 被引量:33
2
作者 ZHANG Rui LONG Ming-xu +2 位作者 LAN Tian ZHENG Jian-long GEOFF Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1965-1980,共16页
The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability an... The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability analysis method for geogrid reinforced expansive soil slopes.The additional pullout force of the free zone due to the lateral swelling and the anti-pullout safety factor of each geogrid layer were obtained by ensuring the overall stability of the reinforced slope.The optimum design was carried out to treat an expansive soil cut slope in Hubei Province,China,by changing the spacing and length of geogrid reinforcement.Calculation results show that the additional pullout force caused by lateral swelling has a great influence on the anti-pullout stability of geogrids,and the local stability of the reinforced slope will be overestimated if the swelling effect of soil in the free zone is not considered. 展开更多
关键词 expansive soil lateral swelling pressure geogrid-soil interaction stability analysis engineering application
在线阅读 下载PDF
Unsaturated expansive soil fissure characteristics combined with engineering behaviors 被引量:14
3
作者 李雄威 王勇 +1 位作者 俞竞伟 王艳丽 《Journal of Central South University》 SCIE EI CAS 2012年第12期3564-3571,共8页
The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indi... The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure. 展开更多
关键词 expansive soil surface fissure ratio fractal dimension PERMEABILITY deformation modulus
在线阅读 下载PDF
Theoretical and experimental study of initial cracking mechanism of an expansive soil due to moisture-change 被引量:11
4
作者 吴珺华 袁俊平 吴宏伟 《Journal of Central South University》 SCIE EI CAS 2012年第5期1437-1446,共10页
Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expa... Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model. 展开更多
关键词 expansive soil swell-shrinking deformation moisture-change CRACK RESISTIVITY
在线阅读 下载PDF
Analytical method of load-transfer of single pile under expansive soil swelling 被引量:11
5
作者 范臻辉 王永和 +1 位作者 肖宏彬 张春顺 《Journal of Central South University of Technology》 EI 2007年第4期575-579,共5页
The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and t... The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and the shear-deformation method.The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling.The comparison of two engineering examples was made to prove the credibility of the suggested method.The analyzed results show that this analytic solution can achieve high precision with few parameters required,indicating its' simplicity and practicability in engineering application.The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design.The method can be employed to obtain various distributive curves of axial force,settlements and skin friction along the pile shaft with the changes of active depth,vertical movements of the surface and loads of pile-top. 展开更多
关键词 expansive soil PILE shear-deformation method load transfer
在线阅读 下载PDF
Engineering properties and microstructure of expansive soil treated with nanographite powder 被引量:4
6
作者 LI Jia-ming TANG Shi-bin +1 位作者 SONG Huai-bo CHEN Xue-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期499-514,共16页
To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.N... To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.Nanographite powder(NGP)has excellent properties,such as high adsorption,conductivity,and lubrication,since it has the characteristics of small size,large specific surface area,and high surface energy.However,previous studies on the improvement of expansive soil with NGP are not processed enough.To study the improvement effect of NGP on expansive soil,non-load swelling ratio tests,consolidation tests,unconfined compressive strength tests,mercury injection tests,and micro-CT tests on expansive soil mixed with different NGP contents were performed.The results show that the non-load swelling ratio,mechanical properties,and porosity of expansive soil show some increasement after adding NGP.The strength of expansive soil reaches the maximum when the NGP content is 1.450%.The cumulative mercury volume and compressive strain of expansive soil reach the maximum with the 2.0%NGP content.Finally,the modification mechanism of swelling,compressibility,microstructure,and compressive strength of expansive soil by NGP is revealed. 展开更多
关键词 nanographite powder expansive soil engineering properties MICROSTRUCTURE micro CT
在线阅读 下载PDF
Expansive soil-structure interaction and its sensitive analysis 被引量:5
7
作者 肖宏彬 张春顺 +1 位作者 何杰 范臻辉 《Journal of Central South University of Technology》 EI 2007年第3期425-430,共6页
Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at t... Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at the interface of expansive soil-structure are presented as follows: linear relation can approximately reflect changes between the both shear stress and the three factors: vertical load, water content and dry density, just different degrees from each other; increasing the vertical load from 25 kPa to 100 kPa (up by 300%) can cause the average increase of ultimate shear stress from 58% (for samples with 1.61 g/cm^3) to 80% (for samples with 1.76 g/cm^3), and an close average increase of 180% for the residual shear stress; increasing the water content from 14.1% to 20.8% (up by 47.5%) can cause the average decrease of the ultimate shear stress from 40% (for samples with 25 kPa) to 80% (for samples with 100 kPa), and the average decrease from 25% (for samples with 25 kPa) to 30% (for samples with 100 kPa) for the residual shear stress; increasing the dry density from 1.61 g/cm^3 to 1.76 g/cm^3 (up by 9.3%) can cause the average increase of ultimate shear stress from 92% (for samples with 25 kPa) to 138% (for samples with 100 kPa), and an average increase of 4% for the residual shear stress. Sensitive analysis was further made to explain reasons causing the differences of the both shear stress induced by the three factors. 展开更多
关键词 expansive soils INTERFACE direct shear friction test ultimate shear stress residual shear stress
在线阅读 下载PDF
Factors influencing accuracy of free swelling ratio of expansive soil 被引量:3
8
作者 WANG Liang-liang WANG Zhao-teng +3 位作者 DING Zhi-ping LIN Yu-liang LEI Xiao-qin LIU Zhi-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1653-1662,共10页
Many geotechnical structures,such as the subgrade of high-speed railway,are extremely sensitive to micro deformations.As one of the most commonly used indexes in China to evaluate the potential swelling level of expan... Many geotechnical structures,such as the subgrade of high-speed railway,are extremely sensitive to micro deformations.As one of the most commonly used indexes in China to evaluate the potential swelling level of expansive soils,the effectiveness and accuracy of free swelling ratio should be highly required.However,due to the deficiency of geotechnical test regulations for the free swelling ratio test,non-negligible variation difference is often observed among the test results of the same type of soil samples.Thus,a series of laboratory tests are conducted to figure out the influences of soil particle size,initial soil temperature,and wet-dry circulation on the free swelling ratio of expansive soils.The results show that the initial soil temperature exerts an obvious influence on free swelling ratio and a relative weak influence on soil mass of expansive soil with the micro soil particle size(d<0.075 mm),and the correlation becomes unclear when soil particle size is within the range of 0.075 mm≤d<0.500 mm.A larger particle size of expansive soils induces a larger free swelling ratio and soil mass in the soil measuring cup regardless of initial soil temperature.However,the enlarging amplitude decreases as the particle size of expansive soils increases.There is a progressive enlargement of free swelling ratio at the first two wet-dry cycles and then it attenuates gradually when the number of wetdry cycles further increases. 展开更多
关键词 free swelling ratio particle size soil temperature wet-dry circulation expansive soil
在线阅读 下载PDF
Plasticity,strength,permeability and compressibility characteristics of black cotton soil stabilized with precipitated silica 被引量:1
9
作者 R.Gobinath G.P.Ganapathy +3 位作者 I.I.Akinwumi S.Kovendiran S.Hema M.Thangaraj 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2688-2694,共7页
The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting o... The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material. 展开更多
关键词 black cotton soil expansive soil precipitated silica rice husk ash soil stabilization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部