When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution...When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.展开更多
To reveal stress distribution and crack propagation of Brazilian discs under impact loads, dynamic tests were conducted with SHPB (split Hopkinson pressure bar) device. Stress states of specimens were monitored with...To reveal stress distribution and crack propagation of Brazilian discs under impact loads, dynamic tests were conducted with SHPB (split Hopkinson pressure bar) device. Stress states of specimens were monitored with strain gauges on specimen surface and SHPB bars. The failure process of specimen was recorded by ultra speed camera FASTCAM SAI.1 (675 000 fps). Stress histories from strain gauges offer comprehensive information to evaluate the stress equilibrium of specimen in time and space. When a slowly rising load (with loading rates less than 1 200 N/s for d 50 mm bar) is applied, there is usually good stress equilibrium in specimen. The stress distribution after equilibrium is similar to its static counterpart. And the first crack initiates at the disc center and propagates along the load direction. But with the front of incident wave becoming steep, it is hard for specimens to get to stress equilibrium. The first crack may appear anywhere on the specimen together with multiple randomly distributed secondary cracks. For a valid dynamic Brazil test with stress equilibrium, the specimen will break into two halves neatly. While for tests with stress disequilibrium, missing strap may be found when broken halves of specimens are put together. For those specimens broken up neatly at center but having missing wedges at the loading areas, it is usually subjected to local buckling from SHPB bars.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it...Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it is closely related to the stability of a rock block.To further study the shear rate-dependent behavior of rock discontinuities,shear tests with alternating shear rates(SASRs)were conducted on rock discontinuities with various surface morphologies.The dynamic evolution of the shear rate dependency was studied in detail based on the shear test results,and three stages were identified with respect to the shear stress and shear deformation states.The test results revealed that dynamic changes in shear stiffness and the energy storage abilities of the rock discontinuities occurred in relation to the shear rate-dependent behavior of crack growth,which increased with an increase in normal stress and/or the joint roughness coefficient.The stage of decreasing shear stiffness corresponded to a stage of noticeable shear rate-dependency,and the shear rate was found to have no influence on the initial crack stress.展开更多
AA1060 aluminum foil was rolled from 4 mm to 20 μm by asymmetric rolling without intermediate annealing. The microstructures and textures were investigated. The original coarse grains with an average grain size of 60...AA1060 aluminum foil was rolled from 4 mm to 20 μm by asymmetric rolling without intermediate annealing. The microstructures and textures were investigated. The original coarse grains with an average grain size of 60 μm were refined to fine equiaxed grains with an average grain size of about 500 nm with mainly large grain boundaries. During the rolling, the intensities of copper texture C-{112}<111> and brass texture B-{011}<211> gradually increased, and most crystallites aggregated along the β and τ orientation lines. The orientation intensity reached the maximum value 26 when the foil was rolled to 500 μm, but significantly decreased to 16 when the thickness became 20 μm, and the texture mainly consisted of a rotation cubic texture RC-{100}<011>. With the combined forces including drawing, compressing and shearing, severe plastic deformation was obtained during the asymmetric rolling, promoting dynamic recrystallization at room temperature. Because of a combined force in the deformation zone and shear force along the normal direction, dynamic recrystallization occurs during the asymmetric rolling; therefore, the average grain size is significantly refined. The texture intensity of ultrathin strip first increases, i.e., work hardening, and then decreases mainly because of dynamic recrystallization.展开更多
Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature r...Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature range. A transient 3D model including heat transfer, fluid flow and tracking of free surface is built in this study. The transport phenomena are investigated by calculating the temperature and velocity fields. The 3D dynamic keyhole evolution process is revealed through tracking free surface using volume-of-fluid method. The results show that the keyhole deepening speed decreases with laser welding process before the quasi-steady state is reached. The plasma can greatly affect the keyhole depth through absorbing a great amount of laser energy and thus lowering the recoil pressure. Moreover, the relationship between keyhole depth and weld penetration is also discussed. This paper can help to better understand the dynamics in molten pool and then improve laser welding process.展开更多
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati...The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environm...As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environment on the Internet, it is of great significance to research a system flexible and capable in dynamic evolution that can find a collaboration method for agents which can be used in dynamic evolution process. With such a method, agents accomplish tasks for an overall target and at the same time, the collaborative relationship of agents can be adjusted with the change of environment. A method of task decomposition and collaboration of agents by improved contract net protocol is introduced. Finally, analysis on the result of the experiments is performed to verify the improved contract net protocol can greatly increase the efficiency of communication and collaboration in multi-agent system.展开更多
基金supported by the National Natural Science Foundation of China(72471240).
文摘When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.
基金Projects(50904079, 51274254, 50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of ChinaProject(NCET-11-0528) supported by Program for New Century Excellent Talents in University of China
文摘To reveal stress distribution and crack propagation of Brazilian discs under impact loads, dynamic tests were conducted with SHPB (split Hopkinson pressure bar) device. Stress states of specimens were monitored with strain gauges on specimen surface and SHPB bars. The failure process of specimen was recorded by ultra speed camera FASTCAM SAI.1 (675 000 fps). Stress histories from strain gauges offer comprehensive information to evaluate the stress equilibrium of specimen in time and space. When a slowly rising load (with loading rates less than 1 200 N/s for d 50 mm bar) is applied, there is usually good stress equilibrium in specimen. The stress distribution after equilibrium is similar to its static counterpart. And the first crack initiates at the disc center and propagates along the load direction. But with the front of incident wave becoming steep, it is hard for specimens to get to stress equilibrium. The first crack may appear anywhere on the specimen together with multiple randomly distributed secondary cracks. For a valid dynamic Brazil test with stress equilibrium, the specimen will break into two halves neatly. While for tests with stress disequilibrium, missing strap may be found when broken halves of specimens are put together. For those specimens broken up neatly at center but having missing wedges at the loading areas, it is usually subjected to local buckling from SHPB bars.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金Projects(42002266,51908288)supported by the National Natural Science Foundation of ChinaProject(2020M673654)supported by the Chinese Postdoctoral Science FoundationProject(2019K284)supported by Jiangsu Post-doctoral Research Funding Program,China。
文摘Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it is closely related to the stability of a rock block.To further study the shear rate-dependent behavior of rock discontinuities,shear tests with alternating shear rates(SASRs)were conducted on rock discontinuities with various surface morphologies.The dynamic evolution of the shear rate dependency was studied in detail based on the shear test results,and three stages were identified with respect to the shear stress and shear deformation states.The test results revealed that dynamic changes in shear stiffness and the energy storage abilities of the rock discontinuities occurred in relation to the shear rate-dependent behavior of crack growth,which increased with an increase in normal stress and/or the joint roughness coefficient.The stage of decreasing shear stiffness corresponded to a stage of noticeable shear rate-dependency,and the shear rate was found to have no influence on the initial crack stress.
基金Projects(51374069,U1460107) supported by the National Natural Science Foundation of China
文摘AA1060 aluminum foil was rolled from 4 mm to 20 μm by asymmetric rolling without intermediate annealing. The microstructures and textures were investigated. The original coarse grains with an average grain size of 60 μm were refined to fine equiaxed grains with an average grain size of about 500 nm with mainly large grain boundaries. During the rolling, the intensities of copper texture C-{112}<111> and brass texture B-{011}<211> gradually increased, and most crystallites aggregated along the β and τ orientation lines. The orientation intensity reached the maximum value 26 when the foil was rolled to 500 μm, but significantly decreased to 16 when the thickness became 20 μm, and the texture mainly consisted of a rotation cubic texture RC-{100}<011>. With the combined forces including drawing, compressing and shearing, severe plastic deformation was obtained during the asymmetric rolling, promoting dynamic recrystallization at room temperature. Because of a combined force in the deformation zone and shear force along the normal direction, dynamic recrystallization occurs during the asymmetric rolling; therefore, the average grain size is significantly refined. The texture intensity of ultrathin strip first increases, i.e., work hardening, and then decreases mainly because of dynamic recrystallization.
基金Projects(51804348,51804196) supported by the National Natural Science Foundation of China
文摘Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature range. A transient 3D model including heat transfer, fluid flow and tracking of free surface is built in this study. The transport phenomena are investigated by calculating the temperature and velocity fields. The 3D dynamic keyhole evolution process is revealed through tracking free surface using volume-of-fluid method. The results show that the keyhole deepening speed decreases with laser welding process before the quasi-steady state is reached. The plasma can greatly affect the keyhole depth through absorbing a great amount of laser energy and thus lowering the recoil pressure. Moreover, the relationship between keyhole depth and weld penetration is also discussed. This paper can help to better understand the dynamics in molten pool and then improve laser welding process.
基金Project(U1234211)supported of the National Natural Science Foundation of ChinaProject(20120009110020)supported by the Specialized Research Fund for Ph.D. Programs of Foundation of Ministry of Education of ChinaProject(SHGF-11-32)supported the Scientific and Technological Innovation Project of China Shenhua Energy Company Limited
文摘The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金Projects(61173026,61373045,61202039)supported by the National Natural Science Foundation of ChinaProjects(K5051223008,BDY221411)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AA02A603)supported by the High-Tech Research and Development Program of China
文摘As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environment on the Internet, it is of great significance to research a system flexible and capable in dynamic evolution that can find a collaboration method for agents which can be used in dynamic evolution process. With such a method, agents accomplish tasks for an overall target and at the same time, the collaborative relationship of agents can be adjusted with the change of environment. A method of task decomposition and collaboration of agents by improved contract net protocol is introduced. Finally, analysis on the result of the experiments is performed to verify the improved contract net protocol can greatly increase the efficiency of communication and collaboration in multi-agent system.