This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified ...This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified oil,reaction temperature,and catalyst loading were studied to optimize the conditions for maximum conversion of free fatty acids(FFAs). The results showed that the optimal conversion rate of FFAs was 91.87% at the mass ratio of methanol to acidified oil of 2.5:1.0,reaction temperature of 65.0 °C,catalyst loading of 5.0 g and reaction time of 8.0 h. The external and internal mass transfer resistances were negligible based on the experimental results and a pseudo-homogeneous kinetic model was proposed for the esterification. The activation energy and thermodynamic parameters including G,S and H were determined. The conversion rates of FFAs obtained from the established model were in good agreement with the experimental data.展开更多
The sluggish kinetics for water oxidation is recognized as one of the major problems for the unsatisfied photoelectrochemical(PEC) performance. Herein, we developed a feasible strategy based on in-situ selective surfa...The sluggish kinetics for water oxidation is recognized as one of the major problems for the unsatisfied photoelectrochemical(PEC) performance. Herein, we developed a feasible strategy based on in-situ selective surface cation exchange, for activating surface water oxidation reactivity toward boosted PEC water oxidation of BiVO_(4) photoanodes with fundamentally improved surface charge transfer. The asconstructed Co/BiVO_(4) photoanodes exhibit 2.6 times increase in photocurrent density with superior stability, in comparison to those of pristine counterpart. Moreover, the faradaic efficiency of as-fabricated photoanode can be up to ~ 95% at 1.23 V(vs. RHE). The unique selective replacement of Bi by Co on the surface could modify the electronic structure of BiVO_(4) with reduced energy barrier of the deprotonation of OH^(+) to O, thus favoring the overall excellent PEC performance of Co/BiVO_(4) photoanode.展开更多
FA-Cs mixed-cation perovskite has been reported as a promising candidate for obtaining highly efficient and stable photovoltaic devices.Phenylethylamine iodide(PEAI)post-treatment is a widely used and effective method...FA-Cs mixed-cation perovskite has been reported as a promising candidate for obtaining highly efficient and stable photovoltaic devices.Phenylethylamine iodide(PEAI)post-treatment is a widely used and effective method for surface passivation of FA-Cs perovskite layer in devices.However,it is still controversial whether the PEAI post-treatment would form two-dimensional(2D)perovskite PEA_(2)PbI_(4) capping layer or just result in PEA+terminated surface.Here in this work,the function of PEAI post-treatment on FA-Cs mixed-cation perovskite FA_(1-x)Cs_(x)PbI_(3)(x=0.1–0.9)with varied Cs contents is elucidated.With increased Cs content,the FA-Cs perovskite shows higher resistance to the cation exchange between FA+and PEA+.This Cs-content-dependent cation exchange results in the different PEAI reaction preferences with FA-Cs mixed-cation perovskites.Furthermore,higher Cs content with stronger resistance to cation exchange reaction leads to a wider processing window for post-treatment and defect passivation,which is beneficial for the fabrication of large-scale photovoltaic devices.展开更多
Here in this paper, we demonstrate a facile technique for creating the mixed formamidinium(HN = CHNH_3~+, FA~+)and methylammonium(CH_3NH_3~+, MA~+) cations in the lead iodide perovskite. This technique entails...Here in this paper, we demonstrate a facile technique for creating the mixed formamidinium(HN = CHNH_3~+, FA~+)and methylammonium(CH_3NH_3~+, MA~+) cations in the lead iodide perovskite. This technique entails a facile drop-casting of formamidinium iodide(FAI) solutions on as-prepared MAPbI_3 perovskite thin films under the controlled conditions,which leads to controllable displacement of the MA~+ cations by FA~+ cations in the perovskite structure at room temperature. Uniform and controllable mixed organic cation perovskite thin films without a "bi-layered" or graded structure are achieved. By applying this approach to photovoltaic devices, we are able to improve the performances of devices through extending their optical-absorption onset further into the infrared region to enhance solar-light harvesting. Additionally,this work provides a simple and efficient technique to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials for high-performance perovskite solar cells.展开更多
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low...Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences.展开更多
Developing a facile approach based on transition metal-based Prussian blue(PB)and its analogues(PBAs)with core-shell nanostructure is a very promising choice for constructing cost-effective electrocatalysts for oxygen...Developing a facile approach based on transition metal-based Prussian blue(PB)and its analogues(PBAs)with core-shell nanostructure is a very promising choice for constructing cost-effective electrocatalysts for oxygen evolution reaction(OER).Herein,a bimetallic core-shell structure with open cages of Fe-doped CoP(Fe-CoP cage)has been synthesized using CoFe-PBA cage-4 as precursor through a facile hydrothermal method and following phosphating process.Interestingly,there is an open hole in each face center of Fe-CoP cage,which suggests the more exposure of active sites for OER.Electrochemical measurements show that Fe-CoP cage can afford a current density of 10 mA cm-2 at a low overpotential(300 mV),which is better than that of RuO2.The excellent performance can be attributed to Fe doping composition and unique open-cage core-shell structure.The synergistic effect derived from bimetallic active for OER has been discussed.And its great catalytic stability has been evaluated via 1000 cycles of CV and chronoamperometry measurement.This work provides a potential method to design multiple transitional metal-doping electrocatalysts with complex framework derived from PBAs for water splitting.展开更多
In order to study the ability of bentonites to remove heavy metal ions from waste water and its factors affecting it,batch sorption experiments of Cu2+ were conducted on Ca-bentonite and Na-bentonite under various con...In order to study the ability of bentonites to remove heavy metal ions from waste water and its factors affecting it,batch sorption experiments of Cu2+ were conducted on Ca-bentonite and Na-bentonite under various conditions.The results show that the adsorption process of bentonite accorded with the Freundlich isotherm model and that the sorption results of Na-bentonite are better than those of Ca-bentonite.Adsorption behavior of both bentonites was strongly depending on pH,initial concentration and additional amounts of bentonites.There are three kinds of adsorption mechanism at different ranges of pH values:the competition adsorption between Cu2+ and H+(pH<3),ion-exchange adsorption(pH=3~7) and precipitation adsorption of copper hydroxyl compounds(pH>8.3).The removal rate of bentonite decreases with an increase in the initial metal ion concentration.The maximum adsorption capacity of Na-bentonite was 26 mg/g and that of Ca-bentonite 12 mg/g.The removal rate of Cu2+ was practically 100% at the initial concentration of 40 mg/L,when 4 g/L of Na-bentonite and 14 g/L of Ca-bentonite were added to the solution.展开更多
Electrocatalytic nitrogen reduction reaction (e NRR) at the ambient conditions is attractive for ammonia(NH_(3)) synthesis due to its energy-efficient and eco-friendly features. However, the extremely strong N≡N trip...Electrocatalytic nitrogen reduction reaction (e NRR) at the ambient conditions is attractive for ammonia(NH_(3)) synthesis due to its energy-efficient and eco-friendly features. However, the extremely strong N≡N triple-bonds in nitrogen molecules and the competitive hydrogen evolution reaction lead to the unsatisfactory NH_(3) yield and the Faradaic efficiency (FE) of e NRR, making the development of high-performance catalysts with adequate active sites and high selectivity essential for further development of e NRR.Addressing this, we herein report a Bi and K dual-doped titanium oxide (BTO@KTO) material, which is prepared by a cation exchange reaction between K_(2)Ti_(4)O_(5) and molten BiCl_(2), for high-performance e NRR catalysts. Benefiting from the controllable molten-salt cation exchange process, a highly active surface containing Bi/K sites and rich oxygen vacancies has been obtained on titanium oxide. Under the synergy of these two merits, an efficient e NRR catalysis, with the NH_(3) yield rate of 32.02 μg h^(-1)mg_(cat)^(-1) and the FE of 12.71%, has been achieved, much superior to that of pristine K_(2)Ti_(4)O_(9). This work thus offers a highperformance electrocatalyst for e NRR, and more importantly, a versatile cation-exchange strategy for efficiently manipulating materials’ functionalities.展开更多
基金support from the Natural Science Foundation of Shandong Province (Grant no.ZR2013BL010)the Research Excellence Award of Shandong University of Technology and the Zibo Technology Research and Development Program of China (Grant no.2013GG04110)
文摘This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified oil,reaction temperature,and catalyst loading were studied to optimize the conditions for maximum conversion of free fatty acids(FFAs). The results showed that the optimal conversion rate of FFAs was 91.87% at the mass ratio of methanol to acidified oil of 2.5:1.0,reaction temperature of 65.0 °C,catalyst loading of 5.0 g and reaction time of 8.0 h. The external and internal mass transfer resistances were negligible based on the experimental results and a pseudo-homogeneous kinetic model was proposed for the esterification. The activation energy and thermodynamic parameters including G,S and H were determined. The conversion rates of FFAs obtained from the established model were in good agreement with the experimental data.
基金supported by the project funded by the National Natural Science Foundation of China (52172222, 5197226 and 51972178)the China Postdoctoral Science Foundation(2020 M681966)+1 种基金the exchange project of the sixth ChinaNorthern Macedonia Science and Technology Meeting (6-11)the Natural Science Foundation of Ningbo Municipal Government(202003 N4164 and 2021J145)。
文摘The sluggish kinetics for water oxidation is recognized as one of the major problems for the unsatisfied photoelectrochemical(PEC) performance. Herein, we developed a feasible strategy based on in-situ selective surface cation exchange, for activating surface water oxidation reactivity toward boosted PEC water oxidation of BiVO_(4) photoanodes with fundamentally improved surface charge transfer. The asconstructed Co/BiVO_(4) photoanodes exhibit 2.6 times increase in photocurrent density with superior stability, in comparison to those of pristine counterpart. Moreover, the faradaic efficiency of as-fabricated photoanode can be up to ~ 95% at 1.23 V(vs. RHE). The unique selective replacement of Bi by Co on the surface could modify the electronic structure of BiVO_(4) with reduced energy barrier of the deprotonation of OH^(+) to O, thus favoring the overall excellent PEC performance of Co/BiVO_(4) photoanode.
基金supported by the National Key Research and Development Program of China(2017YFE0127100)the National Natural Science Foundation of China(NSFC,Grant 22025505)+1 种基金the Program of Shanghai Academic Technology Research Leader(Grant 20XD1422200)the Key Laboratory of Resource Chemistry,Ministry of Education(KLRC_ME2003)。
文摘FA-Cs mixed-cation perovskite has been reported as a promising candidate for obtaining highly efficient and stable photovoltaic devices.Phenylethylamine iodide(PEAI)post-treatment is a widely used and effective method for surface passivation of FA-Cs perovskite layer in devices.However,it is still controversial whether the PEAI post-treatment would form two-dimensional(2D)perovskite PEA_(2)PbI_(4) capping layer or just result in PEA+terminated surface.Here in this work,the function of PEAI post-treatment on FA-Cs mixed-cation perovskite FA_(1-x)Cs_(x)PbI_(3)(x=0.1–0.9)with varied Cs contents is elucidated.With increased Cs content,the FA-Cs perovskite shows higher resistance to the cation exchange between FA+and PEA+.This Cs-content-dependent cation exchange results in the different PEAI reaction preferences with FA-Cs mixed-cation perovskites.Furthermore,higher Cs content with stronger resistance to cation exchange reaction leads to a wider processing window for post-treatment and defect passivation,which is beneficial for the fabrication of large-scale photovoltaic devices.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2015QNA09)
文摘Here in this paper, we demonstrate a facile technique for creating the mixed formamidinium(HN = CHNH_3~+, FA~+)and methylammonium(CH_3NH_3~+, MA~+) cations in the lead iodide perovskite. This technique entails a facile drop-casting of formamidinium iodide(FAI) solutions on as-prepared MAPbI_3 perovskite thin films under the controlled conditions,which leads to controllable displacement of the MA~+ cations by FA~+ cations in the perovskite structure at room temperature. Uniform and controllable mixed organic cation perovskite thin films without a "bi-layered" or graded structure are achieved. By applying this approach to photovoltaic devices, we are able to improve the performances of devices through extending their optical-absorption onset further into the infrared region to enhance solar-light harvesting. Additionally,this work provides a simple and efficient technique to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials for high-performance perovskite solar cells.
基金supported by Scientific Research Projects Coordination Unit of Istanbul University,Project Number:International Research Projects:IRP-27803,as a part of an international collaboration between Istanbul University,IstanbulTurkey and Korea University,Seoul-Korea
文摘Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences.
基金financially supported by Shandong Provincial Natural Science Foundation(ZR2017MB059)the Fundamental Research Funds for the Central Universities(18CX05016A)Postgraduate Innovation Project of China University of Petroleum(YCX2019096)。
文摘Developing a facile approach based on transition metal-based Prussian blue(PB)and its analogues(PBAs)with core-shell nanostructure is a very promising choice for constructing cost-effective electrocatalysts for oxygen evolution reaction(OER).Herein,a bimetallic core-shell structure with open cages of Fe-doped CoP(Fe-CoP cage)has been synthesized using CoFe-PBA cage-4 as precursor through a facile hydrothermal method and following phosphating process.Interestingly,there is an open hole in each face center of Fe-CoP cage,which suggests the more exposure of active sites for OER.Electrochemical measurements show that Fe-CoP cage can afford a current density of 10 mA cm-2 at a low overpotential(300 mV),which is better than that of RuO2.The excellent performance can be attributed to Fe doping composition and unique open-cage core-shell structure.The synergistic effect derived from bimetallic active for OER has been discussed.And its great catalytic stability has been evaluated via 1000 cycles of CV and chronoamperometry measurement.This work provides a potential method to design multiple transitional metal-doping electrocatalysts with complex framework derived from PBAs for water splitting.
基金Projects D2007000695 and D2009000833 supported by the Natural Science Foundation of Hebei Province, China
文摘In order to study the ability of bentonites to remove heavy metal ions from waste water and its factors affecting it,batch sorption experiments of Cu2+ were conducted on Ca-bentonite and Na-bentonite under various conditions.The results show that the adsorption process of bentonite accorded with the Freundlich isotherm model and that the sorption results of Na-bentonite are better than those of Ca-bentonite.Adsorption behavior of both bentonites was strongly depending on pH,initial concentration and additional amounts of bentonites.There are three kinds of adsorption mechanism at different ranges of pH values:the competition adsorption between Cu2+ and H+(pH<3),ion-exchange adsorption(pH=3~7) and precipitation adsorption of copper hydroxyl compounds(pH>8.3).The removal rate of bentonite decreases with an increase in the initial metal ion concentration.The maximum adsorption capacity of Na-bentonite was 26 mg/g and that of Ca-bentonite 12 mg/g.The removal rate of Cu2+ was practically 100% at the initial concentration of 40 mg/L,when 4 g/L of Na-bentonite and 14 g/L of Ca-bentonite were added to the solution.
基金supported by the National Natural Science Foundation of China (22179093)。
文摘Electrocatalytic nitrogen reduction reaction (e NRR) at the ambient conditions is attractive for ammonia(NH_(3)) synthesis due to its energy-efficient and eco-friendly features. However, the extremely strong N≡N triple-bonds in nitrogen molecules and the competitive hydrogen evolution reaction lead to the unsatisfactory NH_(3) yield and the Faradaic efficiency (FE) of e NRR, making the development of high-performance catalysts with adequate active sites and high selectivity essential for further development of e NRR.Addressing this, we herein report a Bi and K dual-doped titanium oxide (BTO@KTO) material, which is prepared by a cation exchange reaction between K_(2)Ti_(4)O_(5) and molten BiCl_(2), for high-performance e NRR catalysts. Benefiting from the controllable molten-salt cation exchange process, a highly active surface containing Bi/K sites and rich oxygen vacancies has been obtained on titanium oxide. Under the synergy of these two merits, an efficient e NRR catalysis, with the NH_(3) yield rate of 32.02 μg h^(-1)mg_(cat)^(-1) and the FE of 12.71%, has been achieved, much superior to that of pristine K_(2)Ti_(4)O_(9). This work thus offers a highperformance electrocatalyst for e NRR, and more importantly, a versatile cation-exchange strategy for efficiently manipulating materials’ functionalities.